Processing math: 100%

Saturday, May 7, 2022

Application of Ramanujan's master theorem III

Another nice integral solved with the Ramanujan's master thorem

Strange integral involving the Euler-Mascheroni constant γ


Today we show the proof of this strange integral posted by @integralsbot 0cos(x2)cos(x)xdx=γ2 In the way to find the solution we also find the following Mellin transform 0ws1(cos(w)cos(w))dw=Γ(s)cos(πs2)Γ(s)Γ(1s)Γ(12s)0<s<1 The proof relies on the powerful Ramanujan's master theorem.

Proof:

Recall the Ramanujan's master theorem:

If a complex-valued function f(x) has an expansion of the form f(x)=k=0φ(k)k!(x)k then the Mellin transform of f(x) is given by 0xs1f(x)dx=Γ(s)φ(s) Back to the integral: 0cos(x2)cos(x)xdx=120cos(w)cos(w)wdw(wx2) Consider the following Mellin transform M{cos(w)cos(w)}=0ws1(cos(w)cos(w))dw Note that we can expand the cosine function in the following way: cos(w)=(eiw)=(n=0inwnn!)=(n=0(in)(wn)n!)=n=0((in))(wn)n!=n=0cos(πn2)(wn)n! and we can exapnd cos(w) in the traditional way: cos(w)=n=0(w)n(2n)! Therefore cos(w)cos(w)=n=0cos(πn2)(wn)n!n=0(x)n(2n)!=n=0[cos(πn2)(wn)n!(w)n(2n)!]=n=0[cos(πn2)n!(2n)!]φ(n)(wn)n!  Applying the Ramanujan's master theorem : 0ws1(cos(w)cos(w))dw=Γ(s)φ(s)from (1)=Γ(s)[cos(πs2)(s)!(2s)!]=Γ(s)[cos(πs2)Γ(1s)Γ(12s)]=Γ(s)cos(πs2)Γ(s)Γ(1s)Γ(12s) Hence 0ws1(cos(w)cos(w))dw=Γ(s)cos(πs2)Γ(s)Γ(1s)Γ(12s) We can use this Mellin transform to calculate our integral Taking the limit as s0+ 0cos(w)cos(w)wdw=0lims0+ws1(cos(w)cos(w))dwlims0+0ws1(cos(w)cos(w))dw=lims0+Γ(s)[cos(πs2)Γ(1s)Γ(12s)]=lims0+Γ(s+1)lims0+[cos(πs2)Γ(1s)Γ(12s)]s=lims0+dds[cos(πs2)Γ(1s)Γ(12s)]lims0+ddss=lims0+12sin(πs2)+Γ(1s)Γ(12s)(ψ(1s)2ψ(12s))=lims0+ψ(1s)2ψ(12s)=ψ(1)=γ Hence 0cos(w)cos(w)wdw=γ Therefore we can conclude 0cos(x2)cos(x)xdx=120cos(w)cos(w)wdw=γ2 0cos(x2)cos(x)xdx=γ2

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...