Strange integral involving the Euler-Mascheroni constant γ
Today we show the proof of this strange integral posted by @integralsbot ∫∞0cos(x2)−cos(x)xdx=γ2 In the way to find the solution we also find the following Mellin transform ∫∞0ws−1(cos(w)−cos(√w))dw=Γ(s)cos(πs2)−Γ(s)Γ(1−s)Γ(1−2s)0<s<1 The proof relies on the powerful Ramanujan's master theorem.
Proof:
Recall the Ramanujan's master theorem:
If a complex-valued function f(x) has an expansion of the form f(x)=∞∑k=0φ(k)k!(−x)k then the Mellin transform of f(x) is given by ∫∞0xs−1f(x)dx=Γ(s)φ(−s) Back to the integral: ∫∞0cos(x2)−cos(x)xdx=12∫∞0cos(w)−cos(√w)wdw(w↦x2) Consider the following Mellin transform M{cos(w)−cos(√w)}=∫∞0ws−1(cos(w)−cos(√w))dw Note that we can expand the cosine function in the following way: cos(w)=ℜ(eiw)=ℜ(∞∑n=0inwnn!)=ℜ(∞∑n=0(−in)(−wn)n!)=∞∑n=0ℜ((−in))(−wn)n!=∞∑n=0cos(πn2)(−wn)n! and we can exapnd cos(√w) in the traditional way: cos(√w)=∞∑n=0(−w)n(2n)! Therefore cos(w)−cos(√w)=∞∑n=0cos(πn2)(−wn)n!−∞∑n=0(−x)n(2n)!=∞∑n=0[cos(πn2)(−wn)n!−(−w)n(2n)!]=∞∑n=0[cos(πn2)−n!(2n)!]⏟φ(n)(−wn)n! Applying the Ramanujan's master theorem : ∫∞0ws−1(cos(w)−cos(√w))dw=Γ(s)φ(−s)from (1)=Γ(s)[cos(−πs2)−(−s)!(−2s)!]=Γ(s)[cos(πs2)−Γ(1−s)Γ(1−2s)]=Γ(s)cos(πs2)−Γ(s)Γ(1−s)Γ(1−2s) Hence ∫∞0ws−1(cos(w)−cos(√w))dw=Γ(s)cos(πs2)−Γ(s)Γ(1−s)Γ(1−2s) We can use this Mellin transform to calculate our integral Taking the limit as s→0+ ∫∞0cos(w)−cos(√w)wdw=∫∞0lims→0+ws−1(cos(w)−cos(√w))dwlims→0+∫∞0ws−1(cos(w)−cos(√w))dw=lims→0+Γ(s)[cos(πs2)−Γ(1−s)Γ(1−2s)]=lims→0+Γ(s+1)lims→0+[cos(πs2)−Γ(1−s)Γ(1−2s)]s=lims→0+dds[cos(πs2)−Γ(1−s)Γ(1−2s)]lims→0+ddss=lims→0+−12sin(πs2)+Γ(1−s)Γ(1−2s)(ψ(1−s)−2ψ(1−2s))=lims→0+ψ(1−s)−2ψ(1−2s)=−ψ(1)=γ Hence ∫∞0cos(w)−cos(√w)wdw=γ Therefore we can conclude ∫∞0cos(x2)−cos(x)xdx=12∫∞0cos(w)−cos(√w)wdw=γ2 ∫∞0cos(x2)−cos(x)xdx=γ2