The sum ∑1(n+1)pnq
Today we prove the following result involving the Riemann zeta function ∞∑n=01(n+1)r+1nm+1=(−1)m[m∑k=1(r+m−kr)(−1)kζ(k+1)−r∑j=1(r−j+mm)ζ(j+1)+(m+r+1r)] In the proof requires we use some properties of the digamma and the polygamma functions.
Proof:
The difference between two digamma functions may be expressed as (a−b)∞∑j=01(j+a)(j+b)=ψ(a)−ψ(b) if we make change the of variable j=n−1 ∞∑n=11(n−1+a)(n−1+b)=ψ(a)−ψ(b)a−b Recall the Leibnitz rule for higher-order derivatives: dndxnf(x)g(x)=n∑j=1(nj)f(n−j)(x)g(n)(x) Differentiating (1) both sides with respect to a, r times: ∞∑n=1(−1)rr!(n−1+a)r+1(n−1+b)=r∑j=0(rj)(dn−jdxn−j1(a−b))(djdajψ(a)−ψ(b))=r∑j=0(rj)((−1)r−j(r−j)!(a−b)r−j+1)(djdajψ(a)−ψ(b))=r∑j=1(rj)(−1)r−j(r−j)!ψ(j)(a)(a−b)r−j+1+(−1)rr!ψ(a)−ψ(b)(a−b)r+1 Where ψ(n)(x) is the polygamma function. This function has the following expansion: ψ(n)(x)=n!∞∑j=0(−1j+x)n+1 from this expansion we can derive the following relation: ψ(n)(1)=n!(−1)n+1ζ(n+1) This function also satisfies the following recurrence formula: ψ(n)(x+1)=ψ(n)(x)−n!(−x)n+1 So, if we let a→2 then ψ(2)=1−γ: ∞∑n=1(−1)rr!(n+1)r+1(n−1+b)=r∑j=1(rj)(−1)r−j(r−j)!ψ(j)(2)(2−b)r−j+1+(−1)rr!1−γ−ψ(b)(a−b)r+1=r∑j=1(rj)(−1)r−j(r−j)!ψ(j)(1)(2−b)r−j+1−r∑j=1(rj)(−1)r−j(r−j)!j!(−1)j+1(2−b)r−j+1+(−1)rr!1−γ−ψ(b)(a−b)r+1 from (4) After rearranging the expression: ∞∑n=11(n+1)r+1(n−1+b)=−r∑j=1ζ(j+1)(2−b)r−j+1+r∑j=11(2−b)r−j+1+1−γ−ψ(b)(2−b)r+1 from (3) If we now differentiate both sides with respect to b, m times: ∞∑n=1(−1)mm!(n+1)r+1(n−1+b)m+1=−r∑j=1(r−j+m)!ζ(j+1)(r−j)!(2−b)r−j+m+2+r∑j=1(r−j+m)!(r−j)!(2−b)r−j+1−m∑k=1(mk)(r+m−k)!ψk(b)r!(2−b)r+m−k+2+(r+m)!r!(1−γ−ψ(b))(2−b)r+m+2 If we let b→1 then ψ(1)=−γ and using again the relationship between ψ(n)(1) and ζ(n+1) ∞∑n=01(n+1)r+1nm+1=−(−1)mr∑j=1(r−j+m)!(r−j)!m!ζ(j+1)+(−1)mr∑j=1(r−j+m)!(r−j)!m!+(−1)mm∑k=1(r+m−k)!(m−k)!r!(−1)kζ(k+1)+(−1)m(r+m)!r!m!=−(−1)mr∑j=1(r−j+mm)ζ(j+1)+(−1)mr∑j=1(r−j+mm)+(−1)mm∑k=1(r+m−kr)(−1)kζ(k+1)+(−1)m(r+mm) We can prove by induction that r∑j=1(r−j+mm)=(r+mm+1) Base case, r=1 1∑j=1(1−j+mm)=(mm)=(m+1m+1) Inductive step, suppose the formula is valid for r=p p∑j=1(p−j+mm)=(p+mm+1) Then, for r=p+1: p+1∑j=1(p+1−j+mm)=p∑k=0(p−k+mm)=(p+mm)+p∑k=1(p−k+mm)=(p+mm)+(p+mm+1)=(p+1+mm+1) Therefore: ∞∑n=01(n+1)r+1nm+1=(−1)m[m∑k=1(r+m−kr)(−1)kζ(k+1)−r∑j=1(r−j+mm)ζ(j+1)+(r+mm+1)+(r+mm)]=(−1)m[m∑k=1(r+m−kr)(−1)kζ(k+1)−r∑j=1(r−j+mm)ζ(j+1)+(r+m+1r)] Hence ∞∑n=01(n+1)r+1nm+1=(−1)m[m∑k=1(r+m−kr)(−1)kζ(k+1)−r∑j=1(r−j+mm)ζ(j+1)+(m+r+1r)]