Loading [MathJax]/jax/output/HTML-CSS/jax.js

Friday, April 5, 2024

Series of the day

Series involving the digamma and the zeta functions

The sum 1(n+1)pnq



Today we prove the following result involving the Riemann zeta function n=01(n+1)r+1nm+1=(1)m[mk=1(r+mkr)(1)kζ(k+1)rj=1(rj+mm)ζ(j+1)+(m+r+1r)] In the proof requires we use some properties of the digamma and the polygamma functions.

Proof:

The difference between two digamma functions may be expressed as (ab)j=01(j+a)(j+b)=ψ(a)ψ(b) if we make change the of variable j=n1 n=11(n1+a)(n1+b)=ψ(a)ψ(b)ab Recall the Leibnitz rule for higher-order derivatives: dndxnf(x)g(x)=nj=1(nj)f(nj)(x)g(n)(x) Differentiating (1) both sides with respect to a, r times: n=1(1)rr!(n1+a)r+1(n1+b)=rj=0(rj)(dnjdxnj1(ab))(djdajψ(a)ψ(b))=rj=0(rj)((1)rj(rj)!(ab)rj+1)(djdajψ(a)ψ(b))=rj=1(rj)(1)rj(rj)!ψ(j)(a)(ab)rj+1+(1)rr!ψ(a)ψ(b)(ab)r+1 Where ψ(n)(x) is the polygamma function. This function has the following expansion: ψ(n)(x)=n!j=0(1j+x)n+1 from this expansion we can derive the following relation: ψ(n)(1)=n!(1)n+1ζ(n+1) This function also satisfies the following recurrence formula: ψ(n)(x+1)=ψ(n)(x)n!(x)n+1 So, if we let a2 then ψ(2)=1γ: n=1(1)rr!(n+1)r+1(n1+b)=rj=1(rj)(1)rj(rj)!ψ(j)(2)(2b)rj+1+(1)rr!1γψ(b)(ab)r+1=rj=1(rj)(1)rj(rj)!ψ(j)(1)(2b)rj+1rj=1(rj)(1)rj(rj)!j!(1)j+1(2b)rj+1+(1)rr!1γψ(b)(ab)r+1 from (4) After rearranging the expression: n=11(n+1)r+1(n1+b)=rj=1ζ(j+1)(2b)rj+1+rj=11(2b)rj+1+1γψ(b)(2b)r+1 from (3) If we now differentiate both sides with respect to b, m times: n=1(1)mm!(n+1)r+1(n1+b)m+1=rj=1(rj+m)!ζ(j+1)(rj)!(2b)rj+m+2+rj=1(rj+m)!(rj)!(2b)rj+1mk=1(mk)(r+mk)!ψk(b)r!(2b)r+mk+2+(r+m)!r!(1γψ(b))(2b)r+m+2 If we let b1 then ψ(1)=γ and using again the relationship between ψ(n)(1) and ζ(n+1) n=01(n+1)r+1nm+1=(1)mrj=1(rj+m)!(rj)!m!ζ(j+1)+(1)mrj=1(rj+m)!(rj)!m!+(1)mmk=1(r+mk)!(mk)!r!(1)kζ(k+1)+(1)m(r+m)!r!m!=(1)mrj=1(rj+mm)ζ(j+1)+(1)mrj=1(rj+mm)+(1)mmk=1(r+mkr)(1)kζ(k+1)+(1)m(r+mm) We can prove by induction that rj=1(rj+mm)=(r+mm+1) Base case, r=1 1j=1(1j+mm)=(mm)=(m+1m+1) Inductive step, suppose the formula is valid for r=p pj=1(pj+mm)=(p+mm+1) Then, for r=p+1: p+1j=1(p+1j+mm)=pk=0(pk+mm)=(p+mm)+pk=1(pk+mm)=(p+mm)+(p+mm+1)=(p+1+mm+1) Therefore: n=01(n+1)r+1nm+1=(1)m[mk=1(r+mkr)(1)kζ(k+1)rj=1(rj+mm)ζ(j+1)+(r+mm+1)+(r+mm)]=(1)m[mk=1(r+mkr)(1)kζ(k+1)rj=1(rj+mm)ζ(j+1)+(r+m+1r)] Hence n=01(n+1)r+1nm+1=(1)m[mk=1(r+mkr)(1)kζ(k+1)rj=1(rj+mm)ζ(j+1)+(m+r+1r)]

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...