Monday, June 14, 2021

Residue theorem

niceintegral

Integral involving the Residue theorem

Today we present here the proof of this nice integral. The solution involves Complex Analysis, geometric series, even functions and trigonometry \begin{align*} \int_{0}^{\infty} \frac{\cos \sqrt{x} }{e^{2\pi \sqrt{x}}-1}dx = & \int_{0}^{\infty}\left[ \sum_{n=1}^{\infty} e^{-2\pi n \sqrt{x}} \cos \sqrt{x}\right] dx\\ =& \sum_{n=1}^{\infty} \int_{0}^{\infty}e^{-2\pi n \sqrt{x}} \cos \sqrt{x} dx \\ =& \sum_{n=1}^{\infty} \int_{0}^{\infty}e^{-2\pi n \sqrt{x}} \left(\frac{e^{i\sqrt{x}}+e^{-i\sqrt{x}}}{2}\right) dx \\ =& \sum_{n=1}^{\infty} \int_{0}^{\infty}\frac{e^{\sqrt{x}(i-2\pi n)}+e^{\sqrt{x}(-i-2\pi n)}}{2} dx \\ =& \frac{1}{2}\sum_{n=1}^{\infty}\int_{0}^{\infty}e^{\sqrt{x}(i-2\pi n)}dx+\frac{1}{2}\sum_{n=1}^{\infty}\int_{0}^{\infty}e^{\sqrt{x}(-i-2\pi n)}dx\\ =& \frac{1}{2}\sum_{n=1}^{\infty} \tfrac{e^{\sqrt{x}(i-2\pi n)}(-1+(i-2\pi n) \sqrt{x})}{(i-2\pi n)^2} \Big|_0^\infty+\frac{1}{2}\sum_{n=1}^{\infty} \tfrac{e^{\sqrt{x}(-i-2\pi n)}(-1+(-i-2\pi n) \sqrt{x})}{(-i-2\pi n)^2}\Big|_{0}^{\infty}\\ =& \sum_{n=1}^{\infty} \frac{1}{(i-2\pi n)^2}+ \sum_{n=1}^{\infty} \frac{1}{(-i-2\pi n)^2}\\ =& \sum_{n=1}^{\infty} \left[\frac{1}{(i-2\pi n)^2}+\frac{1}{(-i-2\pi n)^2}\right]\\ =& 2+\sum_{n=0}^{\infty} \left[\frac{1}{(i-2\pi n)^2}+\frac{1}{(-i-2\pi n)^2}\right]\\ =& 1+\frac{1}{2}\sum_{n=-\infty}^{\infty} \frac{1}{(i-2\pi n)^2} + \frac{1}{2}\sum_{n=-\infty}^{\infty} \frac{1}{(-i-2\pi n)^2}\\ =& 1- \frac{1}{2}\operatorname{Res}\left(\frac{\pi \cot \pi z}{(i-2\pi z)^2}, \frac{i}{2\pi} \right)- \frac{1}{2}\operatorname{Res}\left(\frac{\pi \cot \pi}{(-i-2\pi z)^2}, -\frac{i}{2\pi} \right)\\ =&1- \frac{1}{2}\lim_{z\to \frac{i}{2\pi}} \left[\frac{d}{dz} \frac{(z-\frac{i}{2\pi})^2(\pi \cot \pi z)}{(i-2\pi z)^2}\right]- \frac{1}{2}\lim_{z\to -\frac{i}{2\pi}} \left[\frac{d}{dz} \frac{(z+\frac{i}{2\pi})^2(\pi \cot \pi z)}{(-i-2\pi z)^2}\right]\\ =&1- \frac{1}{8\pi}\lim_{z\to \frac{i}{2\pi}} \frac{d}{dz}\cot \pi z- \frac{1}{8\pi}\lim_{z\to -\frac{i}{2\pi}} \frac{d}{dz}\cot \pi z\\ =&1+ \frac{1}{8}\csc^2 \left(\frac{i}{2}\right) + \frac{1}{8}\csc^2\left( -\frac{i}{2}\right)\\ =& 1-\frac{1}{8}\left( \frac{2i}{e^{-\frac{1}{2}}-e^{\frac{1}{2}}}\right)^2 -\frac{1}{8}\left( \frac{2i}{e^{\frac{1}{2}}-e^{-\frac{1}{2}}}\right)^2 \\ =& 1- \frac{e}{( e-1)^2} \end{align*}

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum $ \displaystyle \sum\frac{1}{(n+1)^pn^q}$ ...