Wednesday, August 11, 2021

Golden ratio

Integral involving the Golden ratio

Integral that relates the secant function and the Golden ratio


Today we repost here the solution to this integral posted on Twitter by @integralsbot: \[\int_{0}^{\infty} \frac{x^{\frac{\pi}{5}-1}}{1+x^{2\pi}} dx = \phi \] In the proof we made use of the integral representation of the $\sec x$ function, a trick that we have used extensively in other occasions (link 1, link 2)

Proof


\[ I= \int_{0}^{\infty} \frac{x^{\frac{\pi}{5}-1}}{1+x^{2\pi}} dx = \frac{1}{\pi}\int_{0}^{\infty} \frac{y^{\frac{4}{5}}}{1+y^2} dw \quad (y \mapsto x^{\pi}) \] Recall the integral representation of $\displaystyle \sec(w)$ (proof below): \[\sec(w) = \frac{2}{\pi} \int_{0}^{\infty} \frac{y^{\frac{2w}{\pi}}}{1+y^2} dy \] Therefore if $ \displaystyle w= \frac{2\pi}{5}$ \[ I = \frac{1}{\pi}\int_{0}^{\infty} \frac{y^{\frac{4}{5}}}{1+y^2} dy = \frac{\sec\left(\frac{2\pi}{5}\right)}{2} = \frac{1+\sqrt{5}}{2} = \phi \] Hence \[ \boxed{\int_{0}^{\infty} \frac{x^{\frac{\pi}{5}-1}}{1+x^{2\pi}} dx = \phi }\]

Appendix

We reproduce here the proof of the integral representation of the sec function again:
The proof can be obtained trough contour integration in a branch cut but here we will use a more straightforward approach with the help of the Ramanujan's master theorem

Let $|a|<1$

Recall \[\frac{1}{1+y^2} = \int_{0}^{1} t^{y^2} dt \] Therefore \begin{align*} \int_{0}^{\infty}\frac{y^a}{1+y^2}dy =& \int_{0}^{\infty}\int_{0}^{1} y^a t^{y^2} dtdy\\ =&\int_{0}^{1} \int_{0}^{\infty} y^a t^{y^2} dydt\\ =& \frac{1}{2}\int_{0}^{1} \int_{0}^{\infty} w^{\frac{a}{2}-\frac{1}{2}} t^{w} dwdt \quad (w \mapsto y^2) \end{align*} The integral $\displaystyle \int_{0}^{\infty} w^{\frac{a}{2}-\frac{1}{2}} t^{w} dw$ is the Mellin transform of $\displaystyle t^w$ at $\displaystyle \frac{a+1}{2}$ Recall that \[t^w = e^{w\ln(t)} = \sum_{n=0}^{\infty} \frac{\ln^n(t)w^n}{n!} = \sum_{n=0}^{\infty} \frac{(-\ln(t))^n(-w^n)}{n!} \] Therefore, by Ramanujan's master theorem \[ \int_{0}^{\infty} w^{\frac{a}{2}-\frac{1}{2}} t^{w} dw = \Gamma\left(\frac{a+1}{2}\right)\left[-\ln(t)\right]^{-\frac{a+1}{2}} \] Therefore \begin{align*} \frac{1}{2}\int_{0}^{1} \int_{0}^{\infty} w^{\frac{a}{2}-\frac{1}{2}} t^{w} dwdt =& \frac{1}{2}\int_{0}^{1} \Gamma\left(\frac{a+1}{2}\right)\left[-\ln(t)\right]^{-\frac{a+1}{2}} dt\\ =& \frac{1}{2}\Gamma\left(\frac{a+1}{2}\right)\int_{0}^{1}\left[-\ln(t)\right]^{-\frac{a+1}{2}} dt\\ =& \frac{1}{2}\Gamma\left(\frac{a+1}{2}\right)\int_{0}^{1}v^{-\frac{a+1}{2}}e^{-v} dv \quad (v\mapsto -ln(t))\\ =& \frac{1}{2}\Gamma\left(\frac{a+1}{2}\right)\Gamma\left(\frac{1-a}{2}\right) \end{align*} Finally, recall the Euler's reflection formula \[\Gamma(z)\Gamma(1-z)= \frac{\pi}{\sin \pi z} = \pi \csc \pi z \] Therefore \[\int_{0}^{\infty}\frac{y^a}{1+y^2}dy = \frac{1}{2}\Gamma\left(\frac{a+1}{2}\right)\Gamma\left(\frac{1-a}{2}\right) = \frac{\pi}{2} \csc\left(\pi \frac{1+a}{2}\right)=\frac{\pi}{2} \sec\left(\pi \frac{a}{2}\right)\] If we let $\displaystyle x = \pi \frac{a}{2}$ then $\displaystyle a=\frac{2x}{\pi}$. Then \[\boxed{\frac{2}{\pi}\int_{0}^{\infty}\frac{y^\frac{2x}{\pi}}{1+y^2}dy = \sec x}\]

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum $ \displaystyle \sum\frac{1}{(n+1)^pn^q}$ ...