Wednesday, September 29, 2021

Inegral of the day III

Another nice integral

Integral involving the binomial coefficient


Today we show the proof of the following integral involving the binomial coefficient posted by @infseriesbot. The bot has a typo but this is the correct formula: \[ \int_{0}^{\infty} \frac{\sin^{2n+1}(x)}{x} dx = \frac{1}{2^{2n}}\binom{2n}{n}\frac{\pi}{2}\]
Proof

    We need the following ingredients for the proof:

  1. $\sin^{r}(x)$ can be expanded with the following formula:
  2. \[ sin^{r}(x) = \begin{cases} \displaystyle \frac{(-1)^n}{2^{r-1}} \sum_{j=0}^{n-1} (-1)^j \binom{r}{j} \cos\left[(r-2j)x\right] + \frac{1}{2^n} \binom{r}{n} &\quad \textrm{if} \quad r=2n \\ \displaystyle \frac{(-1)^n}{2^{r-1}}\sum_{j=0}^{n} (-1)^j \binom{r}{j} \sin\left[(r-2j)x\right] & \quad \textrm{if} \quad r=2n+1 \end{cases} \]

    Proof

    \begin{align*} (2i\sin(x))^{r} = (e^{ix}-e^{-ix})^{r} = & \sum_{j=0}^{r} \binom{r}{j} (-1)^{r-j}e^{ixj}e^{-ix(r-j)} =\sum_{j=0}^{r} \binom{r}{j} (-1)^{r-j}e^{-ix(r-2j)} \\ =& \sum_{j=0}^{r} \binom{r}{j}(-1)^{r-j}\left[\cos(x(r-2j))-i\sin(x(r-2j))\right] \end{align*} Now suppose that $r=2n+1$, then \begin{align*} 2^{2n}(-1)^{n}(2i)\sin^{2n+1}(x) = &\sum_{j=0}^{2n+1} \binom{2n+1}{j}(-1)^{2n+1-j} \left[\cos(x(2n+1-2j))-i\sin(x(2n+1-2j))\right]\\ =& \sum_{j=0}^{n} \binom{2n+1}{j}(-1)^{2n+1-j} \left[\cos(x(2n+1-2j))-i\sin(x(2n+1-2j))\right]\\ +& \sum_{j=n+1}^{2n+1} \binom{2n+1}{j}(-1)^{2n+1-j}\left[\cos(x(2n+1-2j))-i\sin(x(2n+1-2j))\right]\\ =& \sum_{j=0}^{n} \binom{2n+1}{j}(-1)^{j}\left[-\cos(x(2n+1-2j))+i\sin(x(2n+1-2j))\right]\\ +&\sum_{j=n+1}^{2n+1} \binom{2n+1}{2n+1-j}(-1)^{j}\left[-\cos(x(2n+1-2j))+i\sin(x(2n+1-2j))\right] \end{align*} Lets $k=2n+1-j$ then \begin{align*} &\sum_{j=n+1}^{2n+1} \binom{2n+1}{2n+1-j}(-1)^{j}\left[-\cos(x(2n+1-2j))+i\sin(x(2n+1-2j))\right]\\ =& \sum_{k=0}^{n} \binom{2n+1}{k}(-1)^{k}\left[\cos(-x(2n+1-2k))-i\sin(-x(2n+1-2k))\right] \end{align*} Given that for $k=0,...,n$ \begin{eqnarray*} \cos(-x(2n+1-2k))-\cos(x(2n+1-2k))&=&0\\ i\sin(x(2n+1-2k))-i\sin(-x(2n+1-2k))& =& 2i\sin(x(2n+1-2k)) \end{eqnarray*} \begin{equation} \therefore sin^{2n+1}(x) =\frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j} \sin\left[(2n+1-2j)x\right] \end{equation} A similar argument shows the result for $r=2n$

  3. From complex analysis we know that (proof in the appendix):


  4. \begin{equation} \int_{0}^{\infty} \frac{\sin(x)}{x} = \frac{\pi}{2} \end{equation}

  5. From combinatorics we kwnow that that (proof in the appendix):


  6. \begin{equation} \sum _{j=0}^{k} (-1)^j\binom{m}{j} = (-1)^k\binom{m-1}{k} \end{equation} We just have tu put all the ingredients together \begin{align*} \int_{0}^{\infty} \frac{\sin^{2n+1}(x)}{x} dx =& \int_{0}^{\infty} \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j} \frac{\sin\left[(2n+1-2j)x\right]}{x} dx \quad \textrm{from (1)}\\ =& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j}\int_{0}^{\infty} \frac{\sin\left[(2n+1-2j)x\right]}{x} dx \end{align*} If $u= (2n+1-2j)x $ then $ \displaystyle dx = \frac{1}{2n+1-2j} du$ \begin{align*} \int_{0}^{\infty} \frac{\sin^{2n+1}(x)}{x} dx =& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j}\int_{0}^{\infty} \frac{\sin\left[(2n+1-2j)x\right]}{x} dx\\ =& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j}\int_{0}^{\infty} \frac{\sin(u)}{u} du\\ \overset{(2)}{=}& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j} \frac{\pi}{2} \quad \textrm{from (2)}\\ =& \frac{(-1)^n}{2^{2n}} (-1)^{n} \binom{2n}{n}\frac{\pi}{2} \quad \textrm{from (3)}\\ =& \frac{1}{2^{2n}}\binom{2n}{n}\frac{\pi}{2} \end{align*} Therefore \[\boxed{ \int_{0}^{\infty} \frac{\sin^{2n+1}(x)}{x} dx = \frac{1}{2^{2n}}\binom{2n}{n}\frac{\pi}{2}}\]
Appendix: Here are the proofs of (2) and (3):

Proof of (2)

\[\int_{0}^{\infty} \frac{\sin(x)}{x} = \frac{\pi}{2} \] The integral \[I = \operatorname{p.v.} \int_{-\infty}^{\infty} \frac{e^{ix}}{x}dx \] exists by the \emph{Cauchy principal value theroem}. Therefore \[\operatorname{Im}I = \operatorname{p.v.} \int_{-\infty}^{\infty} \frac{\sin(x)}{x}dx\] also exists. Then \[\operatorname{p.v.} \int_{-\infty}^{\infty} \frac{\sin(x)}{x}dx = \int_{-\infty}^{\infty} \frac{\sin(x)}{x}dx \] by the continuity of $\displaystyle \frac{\sin(x)}{x}$ at $x=0$. The existence of $\displaystyle \int_{-\infty}^{\infty} \frac{\sin(x)}{x}dx $ also implies the existence of $\displaystyle \int_{0}^{\infty} \frac{\sin(x)}{x}dx $ and \[\operatorname{Im} I = 2\int_{0}^{\infty} \frac{\sin(x)}{x}dx\] Now applying the residue formula for the principal value: \[ I = \pi i \sum \underset{z=0}{\textrm{Res}}\left(\frac{e^{ix}}{x}\right)=\pi i \Longrightarrow \int_{0}^{\infty} \frac{\sin(x)}{x}dx = \frac{\pi}{2}\]

Proof of (3)

If $k,m \in \mathbb{N}$ \[ \sum _{j=0}^{k} (-1)^j\binom{m}{j} = (-1)^k\binom{m-1}{k}\] Base case Lets $k=1$ then \[(-1)^{0}\binom{m}{0} +(-1)^{1}\binom{m}{1} = 1-m\] On the other hand \[(-1)^{1}\binom{m-1}{1} = 1-m\] Inductive hypothesis Assume the proposition is true for $k=n$, then \[\sum _{j=0}^{n} (-1)^j\binom{m}{j} = (-1)^k\binom{m-1}{n}\] Inductive step Lets $k=n+1$ then \begin{align*} \sum _{j=0}^{n+1} (-1)^j\binom{m}{j} = &\sum _{j=0}^{n} (-1)^j\binom{m}{j} + (-1)^{n+1}\binom{m}{m+1}\\ =& (-1)^{n} \binom{m-1}{n} +(-1)^{n+1} \left[\binom{m-1}{n} +\binom{m-1}{n+1}\right]\\ =& (-1)^{n+1}\binom{m-1}{n+1} \end{align*}

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum $ \displaystyle \sum\frac{1}{(n+1)^pn^q}$ ...