Series expansion of the complete beta function
We show the proof of the following series posted by @infseriesbot \[ \frac{1}{x} + \frac{x}{1!(x+1)}+\frac{x(x+1)}{2!(x+2)}+... = \frac{\pi}{\sin(\pi x)}\]
Proof:
This series is just a special case of the series expansion of the complete beta function: \[B(x,y) = \sum_{j=0}^{\infty}\frac{(1-y)_{j}}{j!(x+j)}\] To prove this, consider the definition of the beta function: \[B(x,y) = \int_{0}^{1} t^{x-1}(1-t)^{y-1}dt\] and recall the series expansion of $(1-t)^{y-1}$ \[(1-t)^{y-1} = \sum_{j=0}^{\infty} (-1)^{j} \binom{y-1}{j}t^{j}\] Hence \begin{align*} \int_{0}^{1} t^{x-1}(1-x)^{y-1}dt =& \int_{0}^{1} t^{x-1}\sum_{j=0}^{\infty} (-1)^{j} \binom{y-1}{j}t^{j}dt\\ =& \sum_{j=0}^{\infty} (-1)^{j} \binom{y-1}{j} \int_{0}^{\infty} t^{x+j-1}dt\\ =& \sum_{j=0}^{\infty} (-1)^{j} \binom{y-1}{j} \frac{1}{(x+j)} \end{align*} Recall the reflection formula for the upper indice \[\binom{-v}{m} = (-1)^{m}\binom{v+m-1}{m}\tag{1} \] and the fact that the Pochhammer polynomials can be expressed as the quotient of two gamma functions: \[(x)_{n} = \frac{\Gamma(n+x)}{\Gamma(x)} \tag{2}\] Then we have \begin{align*} \sum_{j=0}^{\infty} (-1)^{j} \binom{y-1}{j}\frac{1}{(x+j)} =& \sum_{j=0}^{\infty}\binom{j-y}{j}\frac{1}{(x+j)}\quad (\textrm{ from } (1))\\ =& \sum_{j=0}^{\infty}\frac{(j-y)!}{j!(-y)!}\frac{1}{(x+j)}\\ =& \sum_{j=0}^{\infty}\frac{\Gamma(j-y+1)}{j!\Gamma(1-y)} \frac{1}{(x+j)}\\ =& \sum_{j=0}^{\infty}\frac{(1-y)_{j}}{j!(x+j)} \quad (\textrm{ from } (2)) \end{align*} Therefore \[B(x,y) = \sum_{j=0}^{\infty}\frac{(1-y)_{j}}{j!(x+j)}\] Now, if we put $y = 1-x$ we have: \[\sum_{j=0}^{\infty}\frac{(x)_{j}}{j!(x+j)} = B(x,1-x) = \frac{\Gamma(x)\Gamma(1-x)}{\Gamma(1)}\] Recall the Euler's reflection formula \[ \Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)} \quad x\notin \mathbb{N} \] Hence \[\boxed{\sum_{j=0}^{\infty}\frac{(x)_{j}}{j!(x+j)} = \frac{1}{x} + \frac{x}{1!(x+1)}+\frac{x(x+1)}{2!(x+2)}+... = \frac{\pi}{\sin(\pi x)}}\]