Another nice misterious series
Another nice involving {}_{3}F_{2}
We show the proof of this nice series posted by
@PDemichel
:
\sum_{n=0}^{\infty} \frac{(4n)!}{256^n n!^4} = \frac{\pi}{\Gamma^2\left(\frac{5}{8}\right)\Gamma^2\left(\frac{7}{8}\right)}
It turned out that
we proved it earlier using different formulas to calculate
{}_{3}F_{2}.
Proof:
In the past we have used the duplication or
triplication formula for
Pochhamer polyonomials or rising factorials. It turned out that this formulas are particular cases for the general formula (Proof in the Appendix):
(x)_{nm} = m^{nm} \prod_{j=1}^{m}\left(\frac{x+j-1}{m} \right)_{n}
With this formula, we can expand
(4n)! in the following way:
(4n)! = \frac{\Gamma(4n+1)}{\Gamma(1)} = (1)_{4n} = 4^{4n}\left(\frac{1}{4}\right)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{3}{4}\right)_{n}\left(1\right)_{n}
Additionally, we know that
(1)_{n} = n!. Hence,
\sum_{n=0}^{\infty} \frac{(4n)!}{256^n n!^4} = \sum_{n=0}^{\infty} \frac{4^{4n}\left(\frac{1}{4}\right)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{3}{4}\right)_{n}\left(1\right)_{n}}{256^n (1)_{n}(1)_{n}(1)_{n}n!} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}\left(\frac{1}{2}\right)_{n}}{ (1)_{n}(1)_{n}n!}={}_{3}F_{2} \left(\frac{1}{4},\frac{3}{4},\frac{1}{2};1,1;1\right)
Now recall the
Watson’s Sum formula for
{}_{3}F_{2}:
{{}_{3}F_{2}}\left({a,b,c\atop\frac{1}{2}(a+b+1),2c};1\right)=\frac{\Gamma%
\left(\frac{1}{2}\right)\Gamma\left(c+\frac{1}{2}\right)\Gamma\left(\frac{1}{2%
}(a+b+1)\right)\Gamma\left(c+\frac{1}{2}(1-a-b)\right)}{\Gamma\left(\frac{1}{2%
}(a+1)\right)\Gamma\left(\frac{1}{2}(b+1)\right)\Gamma\left(c+\frac{1}{2}(1-a)%
\right)\Gamma\left(c+\frac{1}{2}(1-b)\right)},
Therefore
\sum_{n=0}^{\infty} \frac{(4n)!}{256^n n!^4} ={}_{3}F_{2} \left(\frac{1}{4},\frac{3}{4},\frac{1}{2};1,1;1\right) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(1)\Gamma(1)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\left(\frac{1}{4}+\frac{4}{4}\right)\right)\Gamma\left(\frac{1}{2}\left(\frac{3}{4}+\frac{4}{4}\right)\right)\Gamma\left(\frac{1}{2}+\frac{1}{2}\left(\frac{3}{4}\right)\right)\Gamma\left(\frac{1}{2}+\frac{1}{2}\left(\frac{1}{4}\right)\right)}
Hence
\sum_{n=0}^{\infty} \frac{(4n)!}{256^n n!^4} = \frac{\pi}{\Gamma^2\left(\frac{5}{8}\right)\Gamma^2\left(\frac{7}{8}\right)}
Appendix
We show the proof of this result for Pochhammer polynomials:
(x)_{nm} = m^{nm} \prod_{j=1}^{m}\left(\frac{x+j-1}{m} \right)_{n}
Consider:
(x)_{nm} = x(x+1)(x+2)\ldots (x+nm-1)
Factorize
(x)_{nm} in the following way:
(x)_{nm} = A_{1}\cdot A_{2} \cdot A_{3}\ldots A_{n}
where
\begin{matrix}
A_{1} =& x& (x+1)&(x+2)&\ldots &(x+m-1)\\
A_{2} =& (x+m)& (x+m+1) &(x+m+2) & \ldots & (x+2m-1)\\
A_{3} =& (x+2m)&(x+2m+1)&(x+2m+2)& \ldots &(x+3m-1)\\
\vdots & \vdots & \vdots &\vdots & \ldots & \vdots\\
A_{n} =&(x+(n-1)m) &(x+(n-1)m+1)& (x+(n-1)m+2) & \ldots & (x+nm-1)
\end{matrix}
Now factor m out of each factor in each
A_{j}
\begin{matrix}
A_{1} =& m^m & \frac{x}{m}& \left(\frac{x+1}{m}\right)& \left(\frac{x+2}{m}\right)&\ldots &\left(\frac{x+m-1}{m}\right)\\
A_{2} =& m^m & \left(\frac{x}{m}+1\right)&\left(\frac{x+1}{m}+1\right)&\left(\frac{x+2}{m}+1\right)& \ldots& \left(\frac{x+m-2}{m}\right)\\
A_{3} =& m^m & \left(\frac{x}{m}+2\right)&\left(\frac{x+1}{m}+2\right)&\left(\frac{x+2}{m}+2\right)&\ldots &\left(\frac{x+3m-1}{m}\right)\\
\vdots &\vdots & \vdots& \vdots &\vdots &\ldots &\vdots \\
A_{n} =& \underbrace{m^m}_{B_{0}} & \underbrace{\left(\frac{x}{m}+n-1\right)}_{B_{1}} & \underbrace{\left(\frac{x+1}{m}+n-1\right)}_{B_{2}} &\underbrace{\left(\frac{x+2}{m}+n-1\right)}_{B_{3}} &\ldots & \underbrace{\left(\frac{x+mn-1}{m}\right)}_{B_{m}}
\end{matrix}
Now it touned out that column
B_{0}=m^{nm} and
B_{j} = \left(\frac{x+j-1}{m} \right)_{n}
Therefore
\boxed{(x)_{nm} = B_{0}\cdot B_{1} \cdot B_{2} \ldots B_{m} = m^{nm} \prod_{j=1}^{m}\left(\frac{x+j-1}{m} \right)_{n} }