Series expansion of the complete beta function
We show the proof of the following series posted by @infseriesbot 1x+x1!(x+1)+x(x+1)2!(x+2)+...=πsin(πx)
Proof:
This series is just a special case of the series expansion of the complete beta function: B(x,y)=∞∑j=0(1−y)jj!(x+j) To prove this, consider the definition of the beta function: B(x,y)=∫10tx−1(1−t)y−1dt and recall the series expansion of (1−t)y−1 (1−t)y−1=∞∑j=0(−1)j(y−1j)tj Hence ∫10tx−1(1−x)y−1dt=∫10tx−1∞∑j=0(−1)j(y−1j)tjdt=∞∑j=0(−1)j(y−1j)∫∞0tx+j−1dt=∞∑j=0(−1)j(y−1j)1(x+j) Recall the reflection formula for the upper indice (−vm)=(−1)m(v+m−1m) and the fact that the Pochhammer polynomials can be expressed as the quotient of two gamma functions: (x)n=Γ(n+x)Γ(x) Then we have ∞∑j=0(−1)j(y−1j)1(x+j)=∞∑j=0(j−yj)1(x+j)( from (1))=∞∑j=0(j−y)!j!(−y)!1(x+j)=∞∑j=0Γ(j−y+1)j!Γ(1−y)1(x+j)=∞∑j=0(1−y)jj!(x+j)( from (2)) Therefore B(x,y)=∞∑j=0(1−y)jj!(x+j) Now, if we put y=1−x we have: ∞∑j=0(x)jj!(x+j)=B(x,1−x)=Γ(x)Γ(1−x)Γ(1) Recall the Euler's reflection formula Γ(x)Γ(1−x)=πsin(πx)x∉N Hence ∞∑j=0(x)jj!(x+j)=1x+x1!(x+1)+x(x+1)2!(x+2)+...=πsin(πx)