Loading [MathJax]/jax/output/HTML-CSS/jax.js

Friday, March 18, 2022

Integral of the day XXXI

Integral of a finite product

Integral involving a partial fraction expansion


Today we show the proof of this integral posted by @integralsbot 0k=1k2x2+k2dx=πn2(2n1) The proof relies on the partial fraction decomposition and some properties of the binomial coefficient.

Proof:

We need the following partial fraction decomposition (inspired by this this exercise ): nk=11x+k2=2nk=1(1)k1k2(x+k2)(nk)!(n+k)!

Here is the proof:

Since deg1<deg(x+1)(x+22)(x+n2) there exists a partial fraction decomposition: 1(x+1)(x+22)(x+n2)=nk=1Akx+k2 Multiplying by (x+1)(x+22)(x+n2) 1=nk=1Akni=1ik(x+i2) Suppose that x=m2 with 1mn Hence 1=Amni=1im(m2+i2)=Am(m2+1)(m2+22)+(m2+(m1)2)(m2+(m+1)2)(m2+n2)=Am((m21))((m222))((m2(m1)2))((m+1)2m2)(n2m2)=Am(1)m1(m1)(m+1)(m2)(m+2)(m(m1))(m+(m1))((m+1)+m)((m+1)m)(nm)(n+m)=Am(1)m1[(m1)(m2)212(nm)][(m+1)(m+2)(m+(m1))(m+(m+1))(n+m)]=Am(1)m1[(m1)!(nm)!][(m+1)(m+2)(m+(m1))(m+(m+1))(n+m)] Multiplying and dividing by (2m)m!(2m)m! 1=Am(1)m1[(m1)!(nm)!][m!(m+1)(m+2)(m+(m1))(2m)(m+(m+1))(n+m)](2m)m!=Am(1)m1[(m1)!(nm)!][(n+m)!](2m)m! Multiplying and dividing by m 1=Am(1)m1m!(nm)!(n+m)!(2m2)m!=Am(1)m1(nm)!(n+m)!2m2 Therefore Am=2(1)m1m2(nm)!(n+m)!1mn Hence nk=11x+k2=2nk=1(1)n1k2(x+k2)(nk)!(n+k)! Back to the integral: I=0k=1k2x2+k2dx=(nk=1k2)0k=11x2+k2dx=2n!20nk=1(1)n1k2(x2+k2)(nk)!(n+k)!dx=2n!2nk=1(1)n1k2(nk)!(n+k)!01x2+k2dx=2n!2nk=1(1)n1(nk)!(n+k)!01(xk)2+1dx=2n!2nk=1(1)n1k(nk)!(n+k)!01w2+1dx(wxk)=2n!2nk=1(1)n1k(nk)!(n+k)![arctan(w)]0=πn!2nk=1(1)n1k(nk)!(n+k)! where we have used the fact that nk=1k2=(nk=1k)(nk=1k)=n!2

Finally, we have to prove that πn!2nk=1(1)n1k(nk)!(n+k)!S=πn2(2n1) Note that S=1(2n)!nk=1(1)k1k(2n)!(nk)!(n+k)!=1(2n)!nk=1(2nn+k)(1)k1k=1(2n)!2nj=n+1(2nj)(1)nj1(jn)(j=n+k)=1(2n)!2nj=n+1(2n2nj)(1)nj1(jn)((vvw)=(vw))=1(2n)!m=0m=n1(2nm)(1)mn1(nm)(m=2nj)=(1)n1(2n)!n1m=0(2nm)(1)m(nm)=(1)n1(2n)![nn1m=0(2nm)(1)mn1m=0(2nm)(1)mm]=(1)n1(2n)![nn1m=0(2nm)(1)m2nn1m=0(2n1m1)(1)m]=(1)n1(2n)![2nn1m=0(2n1m)(1)mnn1m=0(2nm)(1)m]((v+1w)=(vw)+(vw1))=1(2n)![2n(2n2n1)n(2n1n1)](mj=0(1)j(vj)=(1)n(v1m))=1(2n)![12n1(2n)!(n1)!(n1)!12n(2n)!(n1)!(n1)!]=n2(2n1)n!n! Hence I=0k=1k2x2+k2dx=πn!2nk=1(1)k1k(nk)!(n+k)!=πn!2S=πn2(2n1) Therefore, we can conclude 0k=1k2x2+k2dx=πn2(2n1)

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...