Processing math: 100%

Sunday, January 16, 2022

Euler's work XIX

Another great Euler sum

Another Euler sum involving the Catalan's constant β(2)


Today we show the proof of this nice Euler sum proposed by @Ali39342137 n=1(2nn)(H2nHn)22n(2n1)2=3πln(2)2+2π2β(2) For the proof we will use some properties of Harmonic numbers and Fourier series.

Proof

We need the following integral representation (proof in Appendix 1): HnH2n+ln(2)=10x2n1+xdx and the following series representation (proof in Appendix 2): n=1(2nn)22n(2n1)2x2n=1x2+xarcsin(x)1|x|1 Therefore n=1(2nn)(H2nHn)22n(2n1)2=n=1(2nn)22n(2n1)2(ln(2)10x2n1+xdx) from (1)=ln(2)n=1(2nn)22n(2n1)2n=1(2nn)22n(2n1)210x2n1+xdx From (2) if we put x=1 n=1(2nn)22n(2n1)2=arcsin(1)1=π21 Hence n=1(2nn)(H2nHn)22n(2n1)2=πln(2)2ln(2)1011+x(n=1(2nn)22n(2n1)2x2n)dx=πln(2)2ln(2)101x2+xarcsin(x)11+xdx from (2) =πln(2)2ln(2)101x21+xdxI10xarcsin(x)1+xdxJ+1011+xdxK I=101x21+xdx=410w2(1+w2)2dw(w1x21+x)=411(1+s2)2ds(s1w)=4π2π2sec2(w)(1+tan2w)2dw(warctan(s))=4π2π2cos2(w)dw(tan2(θ)+1=sec2(θ))=2π2π2cos(2w)dw+12π2π4dw(2cos2(θ)1=cos(2θ))=2π2π4cos(2w)dw+π8=ππ2cos(r)dr+π2(r2w)=1+π2 J=10xarcsin(x)1+xdxIBP=[xarctan(x)ln(1+x)arctan(x)]1010x1x2dx+10ln(x+1)1x2dx=π2πln(2)2[1x2]10+10ln(x+1)1x2dx=π2πln(2)21+10ln(x+1)1x2dx=π2πln(2)21+π20ln(1+cos(w))dw(warccos(x))=π2πln(2)21+π20ln(2cos2(w2))dw(cos(2θ)=2cos2(θ)1)=π2πln(2)21+ln(2)π20dw+2π20ln(cos(w2))dw=π212π20ln(cos(w2))dw Recall the Fourier series: k=1(1)k1cos(kx)k=ln(2cos(x2)) Therefore J=π212π20ln(cos(w2))dw=π212π20k=1(1)k1cos(kw)kdw2ln(2)π20dw=π2πln(2)12k=1(1)k1kπ20cos(kw)dw=π2πln(2)12k=1(1)k1k2kπ20cos(r)dr=π2πln(2)12k=1(1)k1k2[sin(r)]kπ20=π2πln(2)12k=1(1)k1sin(kπ2)k2 Note that (sin(kπ2))kN=(1,0,1,0,1,0,1,0,..) Hence J=π2πln(2)1+2k=1(1)k1(2k1)2=π2πln(2)1+2β(2) K=1011+xdx=[ln(1+x)]10=ln(2) Therefore n=1(2nn)(H2nHn)22n(2n1)2=πln(2)2ln(2)IJ+K=3πln(2)2+2π2β(2) Hence, we can conclude n=1(2nn)(H2nHn)22n(2n1)2=3πln(2)2+2π2β(2)

Appendix 1

ln(2)+HnH2n=10x2n1+xdx

Proof

10x2n1+xdxIBP=[ln(1+x)x2n]102n10ln(1+x)x2n1dx=ln(2)2n10j=1(1)j+1jxjx2n1dx=ln(2)2nj=1(1)j+1j10xj+2n1dx=ln(2)+2nj=1(1)jj(j+2n)=ln(2)+nj=11j(j+n)2nj=11j(j+2n) From the series expansion for Harmonic numbers: Hx=xk=11k(x+k) we obtain ln(2)+HnH2n=10x2n1+xdx

Appendix 2

n=1(2nn)22n(2n1)2x2n=1x2+xarcsin(x)1|x|1

Proof

Recall the following basic series expansion: 11x2=n=0(2nn)22nx2n|x|<1 Dividing by x2 1x21x2=n=0(2nn)22nx2n2=1x2+n=1(2nn)22nx2n2 1x21x21x2=n=1(2nn)22nx2n2 Integrating from 0 to r: r0[1x21x21x2]dx=n=1(2nn)22nr0x2n2dx=n=1(2nn)22n(2n1)r2n1 - Note [1x21x21x2]dx=1x21x2dx1x2dx=1x21x2dx+1x+C=csc2(w)dw+1x+C(xsin(w))=cot(w)+1x+C=cot(arcsin(x))+1x+C=1x2x+1x+C(arcsin(x)=arccot(1x2x))=11x2x+C Hence r0[1x21x21x2]dx=[11x2x]r0=11r2rlimx011x2x=11r2r Therefore 11r2r=n=1(2nn)22n(2n1)r2n1 Dividing by r: 11r2r2=n=1(2nn)22n(2n1)r2n2 Integrating from 0 to t: t011r2r2dt=n=1(2nn)22n(2n1)t0r2n2dt=n=1(2nn)22n(2n1)2t2n1 Note that 11r2r2dr=1r2dr1r2r2dr=1r1r2r2dr+C=1rcot2(w)dw+C(rsin(w))=1r(csc2(w)1)dw+C(csc2(θ)cot2(θ)=1)=1r+cot(w)+w+C=1r+cot(arcsin(r))+arcsin(r)+C=1r+1r2r+arcsin(r)+C(arcsin(x)=arccot(1x2x)) Therefore t011r2r2dt=[1r+1r2r+arcsin(r)]t0=1t1t2t+arcsin(t) Hence 1t+1t2t+arcsin(t)=n=1(2nn)22n(2n1)2t2n1 1t2+tarcsin(t)1=n=1(2nn)22n(2n1)2t2n

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...