Another Euler sum involving the Catalan's constant β(2)
Today we show the proof of this nice Euler sum proposed by @Ali39342137 ∞∑n=1(2nn)(H2n−Hn)22n(2n−1)2=3πln(2)2+2−π−2β(2) For the proof we will use some properties of Harmonic numbers and Fourier series.
Proof
We need the following integral representation (proof in Appendix 1): Hn−H2n+ln(2)=∫10x2n1+xdx and the following series representation (proof in Appendix 2): ∞∑n=1(2nn)22n(2n−1)2x2n=√1−x2+xarcsin(x)−1|x|≤1 Therefore ∞∑n=1(2nn)(H2n−Hn)22n(2n−1)2=∞∑n=1(2nn)22n(2n−1)2(ln(2)−∫10x2n1+xdx) from (1)=ln(2)∞∑n=1(2nn)22n(2n−1)2−∞∑n=1(2nn)22n(2n−1)2∫10x2n1+xdx From (2) if we put x=1 ∞∑n=1(2nn)22n(2n−1)2=arcsin(1)−1=π2−1 Hence ∞∑n=1(2nn)(H2n−Hn)22n(2n−1)2=πln(2)2−ln(2)−∫1011+x(∞∑n=1(2nn)22n(2n−1)2x2n)dx=πln(2)2−ln(2)−∫10√1−x2+xarcsin(x)−11+xdx from (2) =πln(2)2−ln(2)−∫10√1−x21+xdx⏟I−∫10xarcsin(x)1+xdx⏟J+∫1011+xdx⏟K I=∫10√1−x21+xdx=4∫10w2(1+w2)2dw(w↦√1−x21+x)=4∫∞11(1+s2)2ds(s↦1w)=4∫π2π2sec2(w)(1+tan2w)2dw(w↦arctan(s))=4∫π2π2cos2(w)dw(tan2(θ)+1=sec2(θ))=2∫π2π2cos(2w)dw+12∫π2π4dw(2cos2(θ)−1=cos(2θ))=2∫π2π4cos(2w)dw+π8=∫ππ2cos(r)dr+π2(r↦2w)=−1+π2 J=∫10xarcsin(x)1+xdxIBP=[xarctan(x)−ln(1+x)arctan(x)]10−∫10x√1−x2dx+∫10ln(x+1)√1−x2dx=π2−πln(2)2−[−√1−x2]10+∫10ln(x+1)√1−x2dx=π2−πln(2)2−1+∫10ln(x+1)√1−x2dx=π2−πln(2)2−1+∫π20ln(1+cos(w))dw(w↦arccos(x))=π2−πln(2)2−1+∫π20ln(2cos2(w2))dw(cos(2θ)=2cos2(θ)−1)=π2−πln(2)2−1+ln(2)∫π20dw+2∫π20ln(cos(w2))dw=π2−1−2∫π20ln(cos(w2))dw Recall the Fourier series: ∞∑k=1(−1)k−1cos(kx)k=ln(2cos(x2)) Therefore J=π2−1−2∫π20ln(cos(w2))dw=π2−1−2∫π20∞∑k=1(−1)k−1cos(kw)kdw−2ln(2)∫π20dw=π2−πln(2)−1−2∞∑k=1(−1)k−1k∫π20cos(kw)dw=π2−πln(2)−1−2∞∑k=1(−1)k−1k2∫kπ20cos(r)dr=π2−πln(2)−1−2∞∑k=1(−1)k−1k2[sin(r)]kπ20=π2−πln(2)−1−2∞∑k=1(−1)k−1sin(kπ2)k2 Note that (sin(kπ2))k∈N=(1,0,−1,0,1,0,−1,0,..) Hence J=π2−πln(2)−1+2∞∑k=1(−1)k−1(2k−1)2=π2−πln(2)−1+2β(2) K=∫1011+xdx=[ln(1+x)]10=ln(2) Therefore ∞∑n=1(2nn)(H2n−Hn)22n(2n−1)2=πln(2)2−ln(2)−I−J+K=3πln(2)2+2−π−2β(2) Hence, we can conclude ∞∑n=1(2nn)(H2n−Hn)22n(2n−1)2=3πln(2)2+2−π−2β(2)
Appendix 1
ln(2)+Hn−H2n=∫10x2n1+xdx
Proof
∫10x2n1+xdxIBP=[ln(1+x)x2n]10−2n∫10ln(1+x)x2n−1dx=ln(2)−2n∫10∞∑j=1(−1)j+1jxjx2n−1dx=ln(2)−2n∞∑j=1(−1)j+1j∫10xj+2n−1dx=ln(2)+2n∞∑j=1(−1)jj(j+2n)=ln(2)+n∞∑j=11j(j+n)−2n∞∑j=11j(j+2n) From the series expansion for Harmonic numbers: Hx=x∞∑k=11k(x+k) we obtain ln(2)+Hn−H2n=∫10x2n1+xdx
Appendix 2
∞∑n=1(2nn)22n(2n−1)2x2n=√1−x2+xarcsin(x)−1|x|≤1
Proof
Recall the following basic series expansion: 1√1−x2=∞∑n=0(2nn)22nx2n|x|<1 Dividing by x2 1x2√1−x2=∞∑n=0(2nn)22nx2n−2=1x2+∞∑n=1(2nn)22nx2n−2 ⟹1x2√1−x2−1x2=∞∑n=1(2nn)22nx2n−2 Integrating from 0 to r: ∫r0[1x2√1−x2−1x2]dx=∞∑n=1(2nn)22n∫r0x2n−2dx=∞∑n=1(2nn)22n(2n−1)r2n−1 - Note ∫[1x2√1−x2−1x2]dx=∫1x2√1−x2dx−∫1x2dx=∫1x2√1−x2dx+1x+C=∫csc2(w)dw+1x+C(x↦sin(w))=−cot(w)+1x+C=−cot(arcsin(x))+1x+C=−√1−x2x+1x+C(arcsin(x)=arccot(√1−x2x))=1−√1−x2x+C Hence ∫r0[1x2√1−x2−1x2]dx=[1−√1−x2x]r0=1−√1−r2r−limx→01−√1−x2x=1−√1−r2r Therefore 1−√1−r2r=∞∑n=1(2nn)22n(2n−1)r2n−1 Dividing by r: 1−√1−r2r2=∞∑n=1(2nn)22n(2n−1)r2n−2 Integrating from 0 to t: ∫t01−√1−r2r2dt=∞∑n=1(2nn)22n(2n−1)∫t0r2n−2dt=∞∑n=1(2nn)22n(2n−1)2t2n−1 Note that ∫1−√1−r2r2dr=∫1r2dr−∫√1−r2r2dr=−1r−∫√1−r2r2dr+C=−1r−∫cot2(w)dw+C(r↦sin(w))=−1r−∫(csc2(w)−1)dw+C(csc2(θ)−cot2(θ)=1)=−1r+cot(w)+w+C=−1r+cot(arcsin(r))+arcsin(r)+C=−1r+√1−r2r+arcsin(r)+C(arcsin(x)=arccot(√1−x2x)) Therefore ∫t01−√1−r2r2dt=[−1r+√1−r2r+arcsin(r)]t0=−1t−√1−t2t+arcsin(t) Hence −1t+√1−t2t+arcsin(t)=∞∑n=1(2nn)22n(2n−1)2t2n−1 ⟹√1−t2+tarcsin(t)−1=∞∑n=1(2nn)22n(2n−1)2t2n
No comments:
Post a Comment