Wednesday, February 2, 2022

Integral of the day XXIII

An integral involving the Lobachvesky integral formula

Nice integral solved with contour integration


Today we show the proof of this fun integral posted by @integralsbot \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sqrt{1-\tan^2 (x)}}dx = \frac{-1+2\sqrt{2}}{4}\pi -1 \] The proof will rely on contour integration round the unit complex circle.

Proof

\begin{align*} I = \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sqrt{1-\tan^2 (x)}}dx =& \int_{0}^{1} \frac{1}{(1+\sqrt{1-w^2})(1+w^2)}dw \quad \left(w \mapsto \tan x \right)\\ =& \int_{0}^{1} \left( \frac{1-\sqrt{1-w^2}}{1-\sqrt{1-w^2}}\right)\frac{1}{(1+\sqrt{1-w^2})(1+w^2)}dw \\ =& \int_{0}^{1} \frac{1-\sqrt{1-w^2}}{w^2(1+w^2)} dw\\ =& \underbrace{\int_{0}^{1} \frac{1-\sqrt{1-w^2}}{w^2} dw}_{J} - \underbrace{\int_{0}^{1} \frac{1}{1+w^2} dw}_{K} + \underbrace{\int_{0}^{1} \frac{\sqrt{1-w^2}}{1+w^2}dw}_{L} \end{align*} \begin{align*} J = \int_{0}^{1} \frac{1-\sqrt{1-w^2}}{w^2} dw \stackrel{IBP}{=}& \frac{\sqrt{1-w^2}-1}{w}\Big|_{0}^{1} + 2\int_{0}^{1} \frac{1}{\sqrt{1-w^2}} dx \\ =& -1 + 2\arcsin(1)\\ =& -1 + \frac{\pi}{2} \end{align*} \begin{align*} K = \int_{0}^{1} \frac{1}{1+w^2} dw = \arctan(1) = \frac{\pi}{4} \end{align*} \begin{align*} L = \int_{0}^{1} \frac{\sqrt{1-w^2}}{1+w^2}dw =& \frac{1}{2} \int_{-1}^{1} \frac{\sqrt{1-w^2}}{1+w^2}dw \quad \textrm{(the integrand is even)}\\ =& \int_{0}^{\pi} \frac{\sin^2 s}{1+ \cos^2 s} ds \\ =& \int_{0}^{\pi} \frac{1-\cos^2 s}{1+ \cos^2 s} ds \\ =& \int_{0}^{\pi} \frac{2-(1+\cos^2 s)}{1+ \cos^2 s} ds \\ =& 2\int_{0}^{\pi} \frac{1}{1+ \cos^2 s} ds- \int_{0}^{\pi} ds\\ =& 4\int_{0}^{\pi} \frac{1}{3+ \cos(2s)} ds- \pi \quad \left( \cos^2 \vartheta = \frac{1+\cos(2\vartheta)}{2} \right)\\ =& 2\underbrace{ \int_{0}^{2\pi} \frac{1}{3+ \cos\theta}d\theta}_{M} - \pi \\ \end{align*} To solve $M$ we can make the following change of variable \[ \cos \theta = \frac{z+z^{-1}}{2} \] \[ d\theta = \frac{dz}{zi} \] with this change the integral is transformed in a contour integral round the unit complex circle \begin{align*} M = \int_{0}^{2\pi} \frac{1}{3+ \cos\theta}d\theta = \frac{2}{i} \oint_{|z|=1} \frac{1}{z^2+6z+1} dz \end{align*} The only pole inside the unit circle is $ z= 2\sqrt{2}-3$. Therefore by the residue theorem: \begin{align*} \oint_{|z|=1} \frac{1}{z^2+6z+1} dz=& 2\pi i \operatorname{Res}\left(\frac{1}{z^2+6z+1},2\sqrt{2}-3\right) \\ =& \lim_{z \to 2\sqrt{2}-3} \frac{2\pi i}{z+3+2\sqrt{2}} \\ =& \frac{\pi i }{\sqrt{2}} \end{align*} Hence \[ M = \frac{2}{i} \oint_{|z|=1} \frac{1}{z^2+6z+1} dz = \frac{2 \pi}{\sqrt{2}} \] Therefore \[ L = \frac{2}{\sqrt{2}}\pi - \pi \] \[ I = J-k+L = -1 + \frac{\pi}{2}- \frac{\pi}{4} + \frac{2}{\sqrt{2}}\pi - \pi = \frac{-1+2\sqrt{2}}{4}\pi -1 \] Finally, we can conclude \[ \boxed{ \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sqrt{1-\tan^2 (x)}}dx = \frac{-1+2\sqrt{2}}{4}\pi -1 } \]

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum $ \displaystyle \sum\frac{1}{(n+1)^pn^q}$ ...