Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, February 13, 2022

Integral of the day XXVI

An integral involving the Dirichlet eta function

Integral involving the Dirichlet eta function η(v)


Today we show the proof of this integral proposed by @Ali39342137: 0(1x1sinhx)ln(x)xdx=γln(2)+12ln2(2)+ln(π)ln(2) For the proof we use the expansion in partial fractions of the hyperbolic cosecant function and the derivative of the Dirichlet eta function.

Proof:

Recall that the hyperbolic cosecant can be expanded as partial fractions: cschx=1sinhx=1x2xπ2+x2+2x4π2+x22x9π2+x2+=1x+2j=1(1)jxj2π2+x2 Hence, 0(1x1sinhx)ln(x)xdx=0(1x1x2j=1(1)jxj2π2+x2)ln(x)xdx=20j=1(1)jln(x)j2π2+x2dx=2j=10(1)jln(x)j2π2+x2dx=2π2j=1(1)jj20ln(x)1+(xjπ)2dx=2πj=1(1)jj0ln(jπw)1+w2dx=2πj=1(1)jj0ln(jπ)+ln(w)1+w2dw=2πj=1(1)jj[ln(jπ)011+w2dw+0ln(w)1+w2dw]=2πj=1(1)jj[π2ln(jπ)+0ln(w)1+w2dw]=2πj=1(1)jj[π2ln(jπ)+0ddt|t=0+wt1+w2dw]=2πj=1(1)jj[π2ln(jπ)+ddt|t=0+0wt1+w2dw] Recall the integral representation of the secant function: sec(x)=2π0y2xπy2+1dy|x|<π2 If we put x=tπ2 sec(tπ2)=2π0yty2+1dy Hence 0yty2+1dy=π2sec(tπ2) Therefore I=2πj=1(1)jj[π2ln(jπ)+ddt|t=0+0wt1+w2dw]=2πj=1(1)jj[π2ln(jπ)+ddt|t=0+π2sec(tπ2)]=2πj=1(1)jj[π2ln(jπ)+limt0+π24sec(tπ2)tan(tπ2)=0]=j=1(1)j+1ln(jπ)j=j=1(1)j+1[ln(j)+ln(π)]j=j=1(1)j+1ln(j)j+ln(π)j=1(1)j+1j=j=1(1)j+1ln(j)j+ln(π)ln(2) Recall the definition of the Dirichlet eta funcion: η(v)=j=1(1)j+1jv Taking the derivative η(v)=j=1(1)jln(j)jv Therefore limv1η(v)=j=1(1)jln(j)j Now recall the relationship: η(v)=(121V)ζ(v) Hence η(v)=2v[(2v2)ζ(v)+ln(4)ζ(v)] Taking the limit as v1 can be proven that: limv1η(v)=γln(2)12ln2(2) Therefore j=1(1)jln(j)j=γln(2)12ln2(2) Then we have I=j=1(1)j+1ln(j)j+ln(π)ln(2)=γln(2)+12ln2(2)+ln(π)ln(2) Therefore we can conclude 0(1x1sinhx)ln(x)xdx=γln(2)+12ln2(2)+ln(π)ln(2)

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...