Integral involving the Dirichlet eta function η(v)
Today we show the proof of this integral proposed by @Ali39342137: ∫∞0(1x−1sinhx)ln(x)xdx=−γln(2)+12ln2(2)+ln(π)ln(2) For the proof we use the expansion in partial fractions of the hyperbolic cosecant function and the derivative of the Dirichlet eta function.
Proof:
Recall that the hyperbolic cosecant can be expanded as partial fractions: cschx=1sinhx=1x−2xπ2+x2+2x4π2+x2−2x9π2+x2+⋯=1x+2∞∑j=1(−1)jxj2π2+x2 Hence, ∫∞0(1x−1sinhx)ln(x)xdx=∫∞0(1x−1x−2∞∑j=1(−1)jxj2π2+x2)ln(x)xdx=−2∫∞0∞∑j=1(−1)jln(x)j2π2+x2dx=−2∞∑j=1∫∞0(−1)jln(x)j2π2+x2dx=−2π2∞∑j=1(−1)jj2∫∞0ln(x)1+(xjπ)2dx=−2π∞∑j=1(−1)jj∫∞0ln(jπw)1+w2dx=−2π∞∑j=1(−1)jj∫∞0ln(jπ)+ln(w)1+w2dw=−2π∞∑j=1(−1)jj[ln(jπ)∫∞011+w2dw+∫∞0ln(w)1+w2dw]=−2π∞∑j=1(−1)jj[π2ln(jπ)+∫∞0ln(w)1+w2dw]=−2π∞∑j=1(−1)jj[π2ln(jπ)+∫∞0ddt|t=0+wt1+w2dw]=−2π∞∑j=1(−1)jj[π2ln(jπ)+ddt|t=0+∫∞0wt1+w2dw] Recall the integral representation of the secant function: sec(x)=2π∫∞0y2xπy2+1dy|x|<π2 If we put x=tπ2 sec(tπ2)=2π∫∞0yty2+1dy Hence ∫∞0yty2+1dy=π2sec(tπ2) Therefore I=−2π∞∑j=1(−1)jj[π2ln(jπ)+ddt|t=0+∫∞0wt1+w2dw]=−2π∞∑j=1(−1)jj[π2ln(jπ)+ddt|t=0+π2sec(tπ2)]=−2π∞∑j=1(−1)jj[π2ln(jπ)+limt→0+π24sec(tπ2)tan(tπ2)⏟=0]=∞∑j=1(−1)j+1ln(jπ)j=∞∑j=1(−1)j+1[ln(j)+ln(π)]j=∞∑j=1(−1)j+1ln(j)j+ln(π)∞∑j=1(−1)j+1j=∞∑j=1(−1)j+1ln(j)j+ln(π)ln(2) Recall the definition of the Dirichlet eta funcion: η(v)=∞∑j=1(−1)j+1jv Taking the derivative η′(v)=∞∑j=1(−1)jln(j)jv Therefore limv→1η′(v)=∞∑j=1(−1)jln(j)j Now recall the relationship: η(v)=(1−21−V)ζ(v) Hence η′(v)=2−v[(2v−2)ζ′(v)+ln(4)ζ(v)] Taking the limit as v→1 can be proven that: limv→1η′(v)=γln(2)−12ln2(2) Therefore ∞∑j=1(−1)jln(j)j=γln(2)−12ln2(2) Then we have I=∞∑j=1(−1)j+1ln(j)j+ln(π)ln(2)=−γln(2)+12ln2(2)+ln(π)ln(2) Therefore we can conclude ∫∞0(1x−1sinhx)ln(x)xdx=−γln(2)+12ln2(2)+ln(π)ln(2)
No comments:
Post a Comment