Series invoving a quotient of binomial coefficients
We show the proof of this nice result: n∑k=0(nk)3(3nk)=(2n)!3n!3(3n)! For the proof we use the Saalschütz theorem for hypergeometric functions.
Proof:
We will transform this series to an hypergeometric series
Note that (vm)=(v−m+1)mm! where (x)m=x(x+1)(x+2)⋯(x+m−1) is the Pochhammer polynomial (rising factorial)
Hence S=n∑k=0(nk)3(3nk)=n∑k=0(n−k+1)k(n−k+1)k(n−k+1)k(3n−k+1)kk!k! Recall that the rising factorial obey the reflection formula: (−x)k=(x−k+1)k(−1)k Therefore S=n∑k=0(nk)3(3nk)=n∑k=0(n−k+1)k(n−k+1)k(n−k+1)k(3n−k+1)kk!k!=n∑k=0(−1)k(n−k+1)k(−1)k(n−k+1)k(−1)k(n−k+1)k(−1)k(3n−k+1)kk!k!=n∑k=0(−n)k(−n)k(−n)k(−3n)kk!k!=n∑k=0(−n)k(−n)k(−n)k(−3n)k(1)k1k!(k!=(1)k) Recall the generalized hypergeometric function pFq[a1,⋯apb1⋯bq;z]=∞∑k=0(a1)k(a2)k⋯(ap)k(b1)k(b2)k⋯(bq)kzkk! if one of the ai is a negative integer, for example ai=−n with n∈N we say that the series "terminates" and pFq[a1,⋯,−n,⋯,apb1⋯bq;z]=n∑k=0(a1)k(a2)k⋯(−n)k⋯(ap)k(b1)k(b2)k⋯(bq)kzkk! To show this note that (−n)k=(−n)(−n+1)⋯(−n+k−1) Hence (−n)k=0 if k≥n+1 From this is easy to see that S=n∑k=0(nk)3(3nk)=n∑k=0(−n)k(−n)k(−n)k(−3n)k(1)k1k!=3F2[−n,−n,−n−3n,1;1] This series satisfies the Saalschütz theorem: 3F2[−n,a,bc,d;1]=(c−a)n(c−b)n(c)n(c−a−b)n, whenever c+d=a+b+1−n,n=0,1,...
Therefore S=3F2[−n,−n,−n−3n,1;1]=(−2n)n(−2n)n(−3n)n(−n)n=(−1)n(n+1)n(−1)n(n+1)n(−1)n(2n+1)n(−1)n(1)n from (*)=(n+1)n(n+1)n(2n+1)n(1)n=Γ(2n+1)Γ(2n+1)Γ(2n+1)Γ(n+1)Γ(n+1)Γ(3n+1)n!=(2n)!3n!3(3n)! Therefore we can conclude n∑k=0(nk)3(3nk)=(2n)!3n!3(3n)!
No comments:
Post a Comment