Loading [MathJax]/jax/output/HTML-CSS/jax.js

Wednesday, March 2, 2022

Generalized hypergeometric functions IX

Another hypergeometric series

Series invoving a quotient of binomial coefficients


We show the proof of this nice result: nk=0(nk)3(3nk)=(2n)!3n!3(3n)! For the proof we use the Saalschütz theorem for hypergeometric functions.

Proof:

We will transform this series to an hypergeometric series

Note that (vm)=(vm+1)mm! where (x)m=x(x+1)(x+2)(x+m1) is the Pochhammer polynomial (rising factorial)

Hence S=nk=0(nk)3(3nk)=nk=0(nk+1)k(nk+1)k(nk+1)k(3nk+1)kk!k! Recall that the rising factorial obey the reflection formula: (x)k=(xk+1)k(1)k Therefore S=nk=0(nk)3(3nk)=nk=0(nk+1)k(nk+1)k(nk+1)k(3nk+1)kk!k!=nk=0(1)k(nk+1)k(1)k(nk+1)k(1)k(nk+1)k(1)k(3nk+1)kk!k!=nk=0(n)k(n)k(n)k(3n)kk!k!=nk=0(n)k(n)k(n)k(3n)k(1)k1k!(k!=(1)k) Recall the generalized hypergeometric function pFq[a1,apb1bq;z]=k=0(a1)k(a2)k(ap)k(b1)k(b2)k(bq)kzkk! if one of the ai is a negative integer, for example ai=n with nN we say that the series "terminates" and pFq[a1,,n,,apb1bq;z]=nk=0(a1)k(a2)k(n)k(ap)k(b1)k(b2)k(bq)kzkk! To show this note that (n)k=(n)(n+1)(n+k1) Hence (n)k=0 if kn+1 From this is easy to see that S=nk=0(nk)3(3nk)=nk=0(n)k(n)k(n)k(3n)k(1)k1k!=3F2[n,n,n3n,1;1] This series satisfies the Saalschütz theorem: 3F2[n,a,bc,d;1]=(ca)n(cb)n(c)n(cab)n, whenever c+d=a+b+1n,n=0,1,...

Therefore S=3F2[n,n,n3n,1;1]=(2n)n(2n)n(3n)n(n)n=(1)n(n+1)n(1)n(n+1)n(1)n(2n+1)n(1)n(1)n from (*)=(n+1)n(n+1)n(2n+1)n(1)n=Γ(2n+1)Γ(2n+1)Γ(2n+1)Γ(n+1)Γ(n+1)Γ(3n+1)n!=(2n)!3n!3(3n)! Therefore we can conclude nk=0(nk)3(3nk)=(2n)!3n!3(3n)!

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...