The strong connection between the Lis function and ϕ vol. III
Today we show the proof of this integral posted by @integralsbot ∫lnϕ0x2(e2x+1)(e2x−1)dx=ζ(3)10
The proof relies on some identities of the trilogarithm and dilogarithm function. We evaluated similar integrals and series here, here.
Proof:
∫lnϕ0x2(e2x+1)(e2x−1)dx=18∫ϕ21ln2(w)(w+1)w(w−1)dw(w↦e2x)=18∫ϕ21ln2(w)w−1+dw+18∫ϕ21ln2(w)w(w−1)dw=18∫ϕ21ln2(w)w−1dw+18∫ϕ21ln2(w)w−1dw−18∫ϕ21ln2(w)wdw=14∫ϕ21ln2(w)w−1dw⏟J−18∫ϕ21ln2(w)wdw⏟K
K=∫ϕ21ln2(w)wdw=∫lnϕ20s2ds(s↦ln(w))=[s33]lnϕ20=ln3(ϕ2)3
J=∫ϕ21ln2(w)w−1dw=∫ϕ0ln2(1+s)sds(s↦w−1,ϕ2−1=ϕ)IBP=ln(s)ln2(1+s)|ϕ0−2∫ϕ0ln(s)ln(1+s)1+sds=ln(ϕ)ln2(1+ϕ)−2∫ϕ21ln(t−1)ln(t)tdt(t↦s+1)=ln(ϕ)ln2(1+ϕ)−2∫ϕ21ln(t(1−1t))ln(t)tdt=ln(ϕ)ln2(1+ϕ)−2∫ϕ21ln2(t)tdt−2∫ϕ21ln(1−1t)ln(t)tdt=ln(ϕ)ln2(1+ϕ)−23ln3(ϕ2)−2∫ϕ−21ln(1−y)ln(y)ydyIBP=ln(ϕ)ln2(1+ϕ2)−23ln3(ϕ2)+2Li2(y)ln(y)|ϕ−21−2∫ϕ−21Li2(y)ydy=ln(ϕ)ln2(1+ϕ)−23ln3(ϕ2)+2Li2(ϕ−2)ln(ϕ−2)−2∫01Li2(y)ydy−2∫ϕ−20Li2(y)ydy=ln(ϕ)ln2(1+ϕ)−23ln3(ϕ2)+2Li2(ϕ−2)ln(ϕ−2)+2∫10Li2(y)ydy−2∫ϕ−20Li2(y)ydy=ln(ϕ)ln2(1+ϕ)−23ln3(ϕ2)+2Li2(ϕ−2)ln(ϕ−2)+2Li3(1)−2Li3(ϕ−2)
Note that the polylogarithm function is defined by a power series in z:
Lis(z)=∞∑k=1zkks
If we put s=3 and z=1 :
Li3(1)=∞∑k=11k3=ζ(3)
Hence
J=ln(ϕ)ln2(1+ϕ)−23ln3(ϕ2)+2Li2(ϕ−2)ln(ϕ−2)+2ζ(3)−2Li3(ϕ−2)
Landen proved the following identity:
Li3(ϕ−2)=45ζ(3)+π215ln(ϕ−2)−112ln3(ϕ−2)
while Euler proved
Li2(ϕ−2)=π215−ln2(ϕ)
Therefore
J=ln(ϕ)ln2(1+ϕ)−23ln3(ϕ2)−2ln2(ϕ)ln(ϕ−2)+25ζ(3)+ln3(ϕ−2)6
Additionally, from the identities:
ln(ϕ)ln2(ϕ+1)=4ln3(ϕ)
ln2(ϕ)ln(ϕ−2)=−2ln3(ϕ)
ln3(ϕ−2)=−8ln3(ϕ)
we have
J=43ln3(ϕ)+25ζ(3)
Hence
I=14J−18K=13ln3(ϕ)+ζ(3)10−13ln3(ϕ)
Therefore, we can conclude
∫lnϕ0x2(e2x+1)(e2x−1)dx=ζ(3)10
No comments:
Post a Comment