Tuesday, March 8, 2022

The trilogarithm function

The trilogarithm function

The strong connection between the Lis function and ϕ vol. III


Today we show the proof of this integral posted by @integralsbot lnϕ0x2(e2x+1)(e2x1)dx=ζ(3)10
The proof relies on some identities of the trilogarithm and dilogarithm function. We evaluated similar integrals and series here, here.

Proof:

lnϕ0x2(e2x+1)(e2x1)dx=18ϕ21ln2(w)(w+1)w(w1)dw(we2x)=18ϕ21ln2(w)w1+dw+18ϕ21ln2(w)w(w1)dw=18ϕ21ln2(w)w1dw+18ϕ21ln2(w)w1dw18ϕ21ln2(w)wdw=14ϕ21ln2(w)w1dwJ18ϕ21ln2(w)wdwK
K=ϕ21ln2(w)wdw=lnϕ20s2ds(sln(w))=[s33]lnϕ20=ln3(ϕ2)3
J=ϕ21ln2(w)w1dw=ϕ0ln2(1+s)sds(sw1,ϕ21=ϕ)IBP=ln(s)ln2(1+s)|ϕ02ϕ0ln(s)ln(1+s)1+sds=ln(ϕ)ln2(1+ϕ)2ϕ21ln(t1)ln(t)tdt(ts+1)=ln(ϕ)ln2(1+ϕ)2ϕ21ln(t(11t))ln(t)tdt=ln(ϕ)ln2(1+ϕ)2ϕ21ln2(t)tdt2ϕ21ln(11t)ln(t)tdt=ln(ϕ)ln2(1+ϕ)23ln3(ϕ2)2ϕ21ln(1y)ln(y)ydyIBP=ln(ϕ)ln2(1+ϕ2)23ln3(ϕ2)+2Li2(y)ln(y)|ϕ212ϕ21Li2(y)ydy=ln(ϕ)ln2(1+ϕ)23ln3(ϕ2)+2Li2(ϕ2)ln(ϕ2)201Li2(y)ydy2ϕ20Li2(y)ydy=ln(ϕ)ln2(1+ϕ)23ln3(ϕ2)+2Li2(ϕ2)ln(ϕ2)+210Li2(y)ydy2ϕ20Li2(y)ydy=ln(ϕ)ln2(1+ϕ)23ln3(ϕ2)+2Li2(ϕ2)ln(ϕ2)+2Li3(1)2Li3(ϕ2)
Note that the polylogarithm function is defined by a power series in z: Lis(z)=k=1zkks
If we put s=3 and z=1 : Li3(1)=k=11k3=ζ(3)
Hence J=ln(ϕ)ln2(1+ϕ)23ln3(ϕ2)+2Li2(ϕ2)ln(ϕ2)+2ζ(3)2Li3(ϕ2)
Landen proved the following identity: Li3(ϕ2)=45ζ(3)+π215ln(ϕ2)112ln3(ϕ2)
while Euler proved Li2(ϕ2)=π215ln2(ϕ)
Therefore J=ln(ϕ)ln2(1+ϕ)23ln3(ϕ2)2ln2(ϕ)ln(ϕ2)+25ζ(3)+ln3(ϕ2)6
Additionally, from the identities: ln(ϕ)ln2(ϕ+1)=4ln3(ϕ)
ln2(ϕ)ln(ϕ2)=2ln3(ϕ)
ln3(ϕ2)=8ln3(ϕ)
we have J=43ln3(ϕ)+25ζ(3)
Hence I=14J18K=13ln3(ϕ)+ζ(3)1013ln3(ϕ)
Therefore, we can conclude lnϕ0x2(e2x+1)(e2x1)dx=ζ(3)10

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...