Wednesday, June 16, 2021

Feynman's trick

Feynman

Integral involving the Feynman's integral trick

Today we show the proof of this result which involves the famous Feynman's integral trick twice. The post of @infseriesbot has a typo (the sign is wrong). First, we differentiate the parameter $a$ under the integral sign: \begin{align*} \frac{d}{da} \int_{0}^{\infty} \frac{(1-\cos a x)\ln(x)}{x^2}dx =& \int_{0}^{\infty} \frac{d}{da} \frac{(1-\cos a x)\ln(x)}{x^2}dx\\ =&\int_{0}^{\infty} \frac{ \sin a x \ln (x)}{x} dx\\ =&\int_{0}^{\infty} \frac{ \sin w \ln (\frac{w}{a})}{w} dw \quad (w \mapsto ax)\\ =&\int_{0}^{\infty} \frac{ \sin w \ln (w)}{w} dw-\ln (a)\int_{0}^{\infty} \frac{ \sin w }{w} dw \\ =&\int_{0}^{\infty} \frac{\sin w \ln (w)}{w} dw-\frac{\pi \ln(a)}{2}\\\ =& \int_{0}^{\infty} \frac{ \sin w \frac{d}{dt} w^{t} \big|_{t=0+}}{w} dw-\frac{\pi \ln(a)}{2}\\ =& \frac{d}{dt}\Big|_{t=0+}\int_{0}^{\infty} w^{t-1} \sin w dw -\frac{\pi \ln(a)}{2} \end{align*} Here we are using the fact that $\displaystyle \frac{d}{dt} w^{t} \big|_{t=0+} =\ln(w)$ and the fact that $\displaystyle \int_{0}^{\infty} \frac{\sin(w)}{w}dw = \frac{\pi}{2}$ (a famous result obtained through complex analysis). Note that the first integral is the Mellin transform of $\sin w$, so we could use the following expansion series of $\sin$ (a consequence of the Euler's formula and the de Moivre theorem) in oder to apply the Ramanujan's master theorem: \[ \sin w = \sum_{n=0}^{\infty}\frac{(-w)^n[-\sin\left(\frac{n\pi}{2}\right)]}{n!} \] Then, by Ramanujan's master theorem: \begin{align*} \frac{d}{dt}\Big|_{t=0+}\int_{0}^{\infty} w^{t-1} \sin w dw= &\frac{d}{dt}\Big|_{t=0+} \left[\Gamma(t) \sin\left(\frac{t\pi}{2}\right)\right] \\ =& \lim_{t \to 0+}\Gamma(t)\left[\frac{\pi}{2}\cos\left(\frac{t\pi}{2}\right) +\psi^0(t)\sin\left(\frac{\pi t}{2} \right) \right]\\ =& \lim_{t \to 0+}\Gamma(t+1)\left[\frac{\pi}{2}\frac{\cos\left(\frac{t\pi}{2}\right)}{t} +\psi^0(t)\frac{\sin\left(\frac{\pi t}{2} \right)}{t} \right] \end{align*} Update: I found a cool way to calculate this limit:
Note that \begin{align*} \frac{\pi}{2}\frac{\cos\left(\frac{t\pi}{2}\right)}{t} = &\frac{\pi}{2}\frac{1}{t}-\frac{\pi^3}{2^3}\frac{t}{2!}+\frac{\pi^5}{2^5}\frac{t^3}{4!}-\frac{\pi^7}{2^7}\frac{t^5}{6!}+... \\ =& \frac{\pi}{2}\frac{1}{t}+\mathcal{O}(t) \end{align*} Also note that \begin{align*}\psi^0(t)\frac{\sin\left(\frac{\pi t}{2} \right)}{t} =&\psi^0(t)\frac{\pi}{2}-\psi^0(t)\frac{\pi^3}{2^3}\frac{t^2}{3!}+\psi^0(t)\frac{\pi^5}{2^5}\frac{t^4}{5!}-\psi^0(t)\frac{\pi^7}{2^7}\frac{t^6}{7!}+...\\ =& \psi^0(t)\frac{\pi}{2}-t\psi^0(t)\left(\frac{\pi^3}{2^3}\frac{t}{3!}-\frac{\pi^5}{2^5}\frac{t^3}{5!}+\frac{\pi^7}{2^7}\frac{t^5}{7!}-...\right)\\ =& \psi^0(t)\frac{\pi}{2}-t\psi^0(t)\mathcal{O}(t) \end{align*} Therefore \begin{align*}\frac{\pi}{2}\frac{\cos\left(\frac{t\pi}{2}\right)}{t} +\psi^0(t)\frac{\sin\left(\frac{\pi t}{2} \right)}{t} =& \frac{\pi}{2}\frac{1}{t}+\psi^0(t)\frac{\pi}{2}+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t) \\ =& \frac{\pi}{2}\left(\frac{1}{t}+ \psi^0(t)\right)+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t)\\ =&\frac{\pi}{2}\psi^{0}(t+1)+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t)\\ \end{align*} \[\lim_{t \to 0+}\Gamma(t+1)\left[\frac{\pi}{2}\frac{\cos\left(\frac{t\pi}{2}\right)}{t} +\psi^0(t)\frac{\sin\left(\frac{\pi t}{2} \right)}{t} \right] =\lim_{t \to 0+}\Gamma(t+1)\left[\frac{\pi}{2}\psi^{0}(t+1)+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t) \right]=-\frac{\pi}{2}\gamma\]
where $\displaystyle \lim_{t \to 0+} \psi^0(t+1) =-\gamma$ and $\displaystyle \lim_{t \to 0+} t\psi^0(t) =-1$

Therefore
\begin{align*} \frac{d}{da} \int_{0}^{\infty} \frac{(1-\cos a x)\ln(x)}{x^2}dx =& -\frac{\pi}{2} \gamma -\frac{\pi \ln(a)}{2}\\ \Longrightarrow \int_{0}^{\infty} \frac{(1-\cos a x)\ln(x)}{x^2}dx = &-\frac{\pi}{2} \int a\gamma +a\ln(a) da + C\\ =& -\frac{a\pi\gamma}{2} - \frac{a\pi \ln(a)}{2} + \frac{\pi a}{2} + C \end{align*} Note that if $a=0$ then $C=0$ therefore \[\boxed{ \int_{0}^{\infty} \frac{(1-\cos a x)\ln(x)}{x^2}dx = -\frac{\pi a}{2}(\gamma +\ln(a)-1)}\]

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum $ \displaystyle \sum\frac{1}{(n+1)^pn^q}$ ...