Integral involving the Feynman's integral trick
— 級数bot (@infseriesbot) June 16, 2021
Note that \begin{align*} \frac{\pi}{2}\frac{\cos\left(\frac{t\pi}{2}\right)}{t} = &\frac{\pi}{2}\frac{1}{t}-\frac{\pi^3}{2^3}\frac{t}{2!}+\frac{\pi^5}{2^5}\frac{t^3}{4!}-\frac{\pi^7}{2^7}\frac{t^5}{6!}+... \\ =& \frac{\pi}{2}\frac{1}{t}+\mathcal{O}(t) \end{align*} Also note that \begin{align*}\psi^0(t)\frac{\sin\left(\frac{\pi t}{2} \right)}{t} =&\psi^0(t)\frac{\pi}{2}-\psi^0(t)\frac{\pi^3}{2^3}\frac{t^2}{3!}+\psi^0(t)\frac{\pi^5}{2^5}\frac{t^4}{5!}-\psi^0(t)\frac{\pi^7}{2^7}\frac{t^6}{7!}+...\\ =& \psi^0(t)\frac{\pi}{2}-t\psi^0(t)\left(\frac{\pi^3}{2^3}\frac{t}{3!}-\frac{\pi^5}{2^5}\frac{t^3}{5!}+\frac{\pi^7}{2^7}\frac{t^5}{7!}-...\right)\\ =& \psi^0(t)\frac{\pi}{2}-t\psi^0(t)\mathcal{O}(t) \end{align*} Therefore \begin{align*}\frac{\pi}{2}\frac{\cos\left(\frac{t\pi}{2}\right)}{t} +\psi^0(t)\frac{\sin\left(\frac{\pi t}{2} \right)}{t} =& \frac{\pi}{2}\frac{1}{t}+\psi^0(t)\frac{\pi}{2}+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t) \\ =& \frac{\pi}{2}\left(\frac{1}{t}+ \psi^0(t)\right)+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t)\\ =&\frac{\pi}{2}\psi^{0}(t+1)+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t)\\ \end{align*} \[\lim_{t \to 0+}\Gamma(t+1)\left[\frac{\pi}{2}\frac{\cos\left(\frac{t\pi}{2}\right)}{t} +\psi^0(t)\frac{\sin\left(\frac{\pi t}{2} \right)}{t} \right] =\lim_{t \to 0+}\Gamma(t+1)\left[\frac{\pi}{2}\psi^{0}(t+1)+\mathcal{O}(t)-t\psi^0(t)\mathcal{O}(t) \right]=-\frac{\pi}{2}\gamma\]
where $\displaystyle \lim_{t \to 0+} \psi^0(t+1) =-\gamma$ and $\displaystyle \lim_{t \to 0+} t\psi^0(t) =-1$
Therefore
\begin{align*} \frac{d}{da} \int_{0}^{\infty} \frac{(1-\cos a x)\ln(x)}{x^2}dx =& -\frac{\pi}{2} \gamma -\frac{\pi \ln(a)}{2}\\ \Longrightarrow \int_{0}^{\infty} \frac{(1-\cos a x)\ln(x)}{x^2}dx = &-\frac{\pi}{2} \int a\gamma +a\ln(a) da + C\\ =& -\frac{a\pi\gamma}{2} - \frac{a\pi \ln(a)}{2} + \frac{\pi a}{2} + C \end{align*} Note that if $a=0$ then $C=0$ therefore \[\boxed{ \int_{0}^{\infty} \frac{(1-\cos a x)\ln(x)}{x^2}dx = -\frac{\pi a}{2}(\gamma +\ln(a)-1)}\]
No comments:
Post a Comment