zeta series
Series involving the zeta function, e and pi
We show the proof of this beutiful series posted by @infseriesbot.
\[\exp\left(\frac{\zeta(2)}{2}-\frac{\zeta(2)}{3}+\frac{\zeta(4)}{4}-\frac{\zeta(4)}{5}+\frac{\zeta(6)}{6}-...\right)=\sqrt{\frac{2\pi}e}\]
To prove this result we use two concepts:
- The Taylor series expansion of the log-Gamma function $\ln \Gamma(x) $
- The Euler's reflection formula for the Gamma function $ \Gamma(x)$
Lets start with the left hand side
\begin{align*}
\frac{\zeta(2)}{2}-\frac{\zeta(2)}{3}+\frac{\zeta(4)}{4}-\frac{\zeta(4)}{5}+\frac{\zeta(6)}{6}-...=&\sum_{n=1}^{\infty} \left(\frac{1}{2n}-\frac{1}{2n+1}\right)\zeta(2n)\\
=&\sum_{n=1}^{\infty}\frac{\zeta(2n)}{(2n)(2n+1)}
\end{align*}
What is the series of the right hand side? This series is related to the expansion series of the log-Gamma function:
\[\ln(\Gamma(z))=-\gamma(z-1)+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta(k)}{k} (z-1)^{k} \quad |z-1|<1\]
where $\gamma$ is the Euler-Mascheroni constant.
If we let $z=1+t$ and then $z=1-t$ in the expansion series we obtain two equations:
\begin{align*}
\ln(\Gamma(t+1))&=\gamma t+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta(k)}{k} t^{k} \\
\ln(\Gamma(1-t))&=-\gamma t+\sum_{k=2}^{\infty}\frac{\zeta(k)}{k} t^{k}
\end{align*}
Adding both equations:
\begin{align*}
\ln(\Gamma(t+1))+\ln(\Gamma(1-t))&=\sum_{k=1}^{\infty}\frac{\zeta(2k)}{2k} t^{2k} \label{eq:3}
\end{align*}
Integrating both sides:
\begin{align*}
\int_{0}^{1}\left(\ln(\Gamma(t+1))+\ln(\Gamma(1-t))\right)dt &=\sum_{k=1}^{\infty}\frac{\zeta(2k)}{k} \int_{0}^{1}t^{2k} dt \\
\Longrightarrow \frac{1}{2}\int_{0}^{1}\left(\ln(\Gamma(t+1))+\ln(\Gamma(1-t))\right)dt & = \sum_{k=1}^{\infty}\frac{\zeta(2k)}{2k(2k+1)} \tag{1}
\end{align*}
This is the series we were looking for in terms of a definite integral. Hopefully we can transform it to a maneuverable one. Here is where the Euler's reflection formula for the Gamma function is useful:
\begin{align*}
\Gamma(t)\Gamma(1-t)=\frac{\pi}{\sin(\pi t)} \quad t\notin \mathbb{Z}
\end{align*}
Therefore
\begin{align*}
\frac{1}{2}\int_{0}^{1}\left(\ln(\Gamma(t+1))+\ln(\Gamma(1-t))\right)dt & = \frac{1}{2}\int_{0}^{1}\left(\ln(\Gamma(t+1))(\Gamma(1-t))\right)dt\\
& =\frac{1}{2}\int_{0}^{1}\left(ln(t\cdot\Gamma(t))(\Gamma(1-t))\right)dt\\
& =\frac{1}{2}\int_{0}^{1}\ln\left( \frac{t \cdot \pi}{\sin(\pi t)}\right)dt\\
& = \frac{1}{2}\ln(\sqrt{\pi})-\frac{1}{2}-\frac{1}{2}\int_{0}^{1}\ln(\sin(t\pi))dt \tag{2}
\end{align*}
We just have to prove that $\int_{0}^{1}\ln(\sin(t\pi))dt=-\ln(2)$
\begin{align*}
\int_{0}^{1}\ln(\sin(t\pi))dt& = \int_{0}^{\frac{1}{2}}\ln(\sin(2\pi t))dt\\
& =\ln(2)+ \int_{0}^{\frac{1}{2}}(\sin(\pi t))dt+\int_{0}^{\frac{1}{2}}\ln(\cos(\pi t))dt \quad (\sin(2t)=2\sin(t)\cos(t)) \\
\end{align*}
We also know that
\begin{align*}
\int_{0}^{1}\ln(\sin(t\pi))dt& = 2\int_{0}^{\frac{1}{2}}\ln(\sin(\pi t))dt \quad \text{(using $-\sin(\theta)=\sin(-\theta)$)}\\
&= \int_{0}^{\frac{1}{2}}\ln(\sin(2\pi t))dt
\end{align*}
Therefore
\begin{align*}
\int_{0}^{1}\ln(\sin(t\pi))dt& \ln(2)+ \int_{0}^{\frac{1}{2}}\ln(\sin(\pi t))dt+\int_{0}^{\frac{1}{2}}\ln(\cos(\pi t))dt \\
& = \ln(2)+ \int_{0}^{\frac{1}{2}}\ln(\sin(\pi t))dt+\int_{0}^{\frac{1}{2}}\ln(\sin(\pi w))dw \quad \text{($w=\frac{1}{2}-t$)}\\
& = \ln(2)+ 2\int_{0}^{1}\ln(\sin(\pi t))dt+2\int_{0}^{1}\ln(\sin(\pi w))dw
\end{align*}
\begin{align*}
\Longrightarrow \int_{0}^{1}\ln(\sin(t\pi))dt & = \ln(2)+ \int_{0}^{1}\ln(\sin(t\pi))dt+\int_{0}^{1}\ln(\sin(t\pi))dt \\
\Longrightarrow \int_{0}^{1}\ln(\sin(\pi t))dt & = -\ln(2) \\ \tag{3}
\end{align*}
We conclude from results (1),(2) and (3) our claim:
\begin{align*}
\frac{\zeta(2)}{2}-\frac{\zeta(2)}{3}+\frac{\zeta(4)}{4}-\frac{\zeta(4)}{5}+\frac{\zeta(6)}{6}-...&= \frac{1}{2}\ln(\sqrt{\pi})-\frac{1}{2}-\int_{0}^{1}\ln(\sin(t\pi))dt\\
=&\frac{1}{2}\ln(\sqrt{\pi})-\frac{1}{2}+\frac{1}{2}\ln(2) \\
\end{align*}
\[\boxed{
\exp\left(\frac{\zeta(2)}{2}-\frac{\zeta(2)}{3}+\frac{\zeta(4)}{4}-\frac{\zeta(4)}{5}+\frac{\zeta(6)}{6}-...\right)=\sqrt{\frac{2\pi}e}}\]
No comments:
Post a Comment