Series involving $K(p)$ and the Catalan constant
Today we show the proof of this result posted by @seriesbot_q on Twitter: \[\beta(2) = \frac{\pi}{4}\sum_{n=0}^{\infty}\frac{ \binom{2n}{n}^2}{2^{4n}(2n+1)} \] This series turned out being a slight variation of the series expansion of the complete elliptic integral of the first kind $K(p)$ .
Proof
Recall the definition of the complete elliptic integral of the first kind: \[K(p) = \int_{0 }^{\frac{\pi}{2}} \frac{1}{\sqrt{1-p^2 \sin^2 \theta}} d\theta \quad |p|<1\]
First, we are going to obtain its series expansion.
In a previous post we proved the following result: \[ \frac{1}{\sqrt{1-x}} = \sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!}x^n \quad 0\leq x <1 \] We know that \[ -1\leq \sin \theta \leq 1 \] \[ |p|<1\] \[\Longrightarrow p^2\sin^2 \theta < 1\] Hence \[ \frac{1}{\sqrt{1-p^2\sin^2 \theta}} = \sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!}p^{2n}\sin^{2n}(\theta) \] Integrating from $0$ to $\displaystyle \frac{\pi}{2}$ \begin{align*} K(p)= \int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1-p^2\sin^2 \theta}}d\theta = & \int_{0}^{\frac{\pi}{2}}\sum_{n=0}^{\infty}p^{2n} \frac{(2n-1)!!}{(2n)!!}\sin^{2n}(\theta)d\theta\\ =& \sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!}p^{2n}\int_{0}^{\frac{\pi}{2}}\sin^{2n}(\theta)d\theta\\ =& \sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!}p^{2n}\int_{0}^{1}w^{2n}(1-w^2)^{-\frac{1}{2}} dw \quad (w \mapsto \sin\theta )\\ =& \frac{1}{2}\sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!}p^{2n}\int_{0}^{1}s^{n+\frac{1}{2}-1}(1-s)^{\frac{1}{2}-1} ds \quad (s \mapsto w^2 )\\ =& \frac{1}{2}\sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!}p^{2n}B\left(n+\frac{1}{2},\frac{1}{2}\right)\\ =& \frac{1}{2}\sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!} p^{2n}\frac{\Gamma\left(n+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(n+1)} \end{align*} From the properties of the double factorial we have: \[ (2n-1)!! = 2^{n} \frac{\Gamma\left(n+\frac{1}{2}\right) }{\sqrt{\pi} }\] \[ (2n)!! = 2^{n}n! = 2^{n} \Gamma(n+1)\] Hence \begin{align*} K(p)= \frac{1}{2}\sum_{n=0}^{\infty}\frac{(2n-1)!!}{(2n)!!} \frac{\Gamma\left(n+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(n+1)} p^{2n}= & \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(2n-1)!!^2}{(2n)!!^2} p^{2n} \end{align*} Recall the we can also write \[ \frac{(2n-1)!!}{(2n)!!} = \frac{ \binom{2n}{n}}{2^{2n}}\] Therefore, this is the expansion series of the complete elliptic integral of the first kind: \[ K(p) = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{(2n-1)!!^2}{(2n)!!^2} p^{2n} = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{ \binom{2n}{n}}{2^{4n}}^2 p^{2n}\] Now, integrating from $0$ to $1$ \[ \int_{0}^{1}K(p)dp = \frac{\pi}{2}\sum_{n=0}^{\infty}\frac{ \binom{2n}{n}^2}{2^{4n}(2n+1)} \] The right hand side is the series that we are looking for. Then, we just have to find the solution to the integral in the left hand side: \begin{align*}\int_{0}^{1}K(p)dp =& \int_{0}^{1}\int_{0 }^{\frac{\pi}{2}} \frac{1}{\sqrt{1-p^2 \sin^2 \theta}}d\theta dp\\ =& \int_{0 }^{\frac{\pi}{2}} \int_{0}^{1} \frac{1}{\sqrt{1-p^2 \sin^2 \theta}}dpd\theta\\ =& \int_{0 }^{\frac{\pi}{2}} \int_{0}^{\sin \theta} \frac{1}{\sqrt{1-w^2}\sin \theta }dwd\theta \quad (w \mapsto p\sin \theta )\\ =& \int_{0 }^{\frac{\pi}{2}} \frac{1}{\sin \theta} \int_{0}^{\sin \theta} \frac{1}{\sqrt{1-w^2} }dwd\theta \quad\\ =& \int_{0 }^{\frac{\pi}{2}} \frac{1}{\sin \theta} \arcsin(\sin \theta) d\theta \\ =& \int_{0 }^{\frac{\pi}{2}} \frac{\theta}{\sin \theta} d\theta \\ \end{align*} We solved this last integral in another post and the solution turned out being $2 \beta(2)$. Hence \[ \int_{0}^{1}K(p)dp = 2\beta(2) \] Therefore \[\boxed{ \beta(2) = \frac{\pi}{4}\sum_{n=0}^{\infty}\frac{ \binom{2n}{n}^2}{2^{4n}(2n+1)} }\]