Another singular integral of @integralsbot
Today we show the proof of this integral posted by @integralsbot ∫10x21+x2√1−x1+xdx=ln(1+√2)√2+(1−1√2)π2−1
Proof
Firt, if we make the substitution w=√1−x1+x⟹x=1−w21+w2⟹dx=−4w(1+w2)2dw
Hence
I=∫10x21+x2√1−x1+xdx=−∫102w2(w−1)2(1+w)2(1+w2)2(1+w4)dw=4∫1011+w2dw⏟J−4∫101(1+w2)2dw⏟K−2∫10w21+w4dw⏟Q
J=∫1011+w2dw=arctan(w)|10=π4
K=∫101(1+w2)2dw=∫π40sec2(r)(1+tan2(r))2dr(w↦tan(r))=∫π40cos2(r)dr(1+tan2(r)=sec2(r))=12∫π40cos(2r)dr+12∫π40dr(cos2(r)=cos(2r)+12)=14∫π20cos(t)dt+π8(t↦2r)=14+π8
Now for Q, note that
∫∞0w21+w4dw⏟L−∫∞1w21+w4dw⏟M=∫10w21+w4dw⏟Q
L=∫∞0w21+w4dw=12∫∞0√s1+s2ds(s2↦w4)
Recall the integral representation of the sec(x) function:
sec(x)=2π∫∞0t2x/πt2+1dt|x|<π2
If we put x=π4
sec(π4)=2π∫∞0√tt2+1dt⟹∫∞0√tt2+1dt=π2sec(π4)=π√2
Then
L=12∫∞0√s1+s2ds=π2√2
For M:
M=∫∞1w21+w4dw=∫1011+r4dr(r↦1w)
Hence
M=∫1011+r4dr=12∫10(1+r2)+(1−r2)1+r4dr=12∫101+r21+r4dr⏟F+12∫101−r21+r4dr⏟G
F=∫101+x21+x4dx=∫101x2+11x2+x2dx=∫101x2+11x2+x2dx=∫101x2+1(x−1x)2+2dx=∫∞01w2+2dx(w↦x−1x)=√22∫∞01r2+1dx(r2↦w22)=π2√2
G=∫101−x21+x4dx=∫101−1x21x2+x2dx=∫101−1x21x2+x2dx=∫101−1x2(x+1x)2−2dx=−∫∞21w2−2dx(w↦x+1x)=12√2∫∞2[1w+√2−1w−√2]dx=12√2[ln(w+√2)−ln(w−√2)]∞2=1√2[ln(√w√2+1w√2−1)]∞2=1√2[arccoth(w√2)]∞2=arccoth(√2)√2
Hence
M=12F+12G=π4√2+arccoth(√2)2√2
Q=L−M=π4√2−arccoth(√2)2√2
Therefore
I=4J−4K−2Q=π−1−π2−π2√2+arccoth(√2)√2
Finally, using the following identity:
arccoth(x)=sign(x)arcsinh(1√x2−1)
We have
arccoth(√2)=arcsinh(1)=ln(1+√2)
Therefore
∫10x21+x2√1−x1+xdx=ln(1+√2)√2+(1−1√2)π2−1
No comments:
Post a Comment