Saturday, November 27, 2021

Integral of the day IX

Another singular integral

Another singular integral of @integralsbot


Today we show the proof of this integral posted by @integralsbot 10x21+x21x1+xdx=ln(1+2)2+(112)π21


Proof

Firt, if we make the substitution w=1x1+xx=1w21+w2dx=4w(1+w2)2dw
Hence I=10x21+x21x1+xdx=102w2(w1)2(1+w)2(1+w2)2(1+w4)dw=41011+w2dwJ4101(1+w2)2dwK210w21+w4dwQ
J=1011+w2dw=arctan(w)|10=π4
K=101(1+w2)2dw=π40sec2(r)(1+tan2(r))2dr(wtan(r))=π40cos2(r)dr(1+tan2(r)=sec2(r))=12π40cos(2r)dr+12π40dr(cos2(r)=cos(2r)+12)=14π20cos(t)dt+π8(t2r)=14+π8
Now for Q, note that 0w21+w4dwL1w21+w4dwM=10w21+w4dwQ
L=0w21+w4dw=120s1+s2ds(s2w4)
Recall the integral representation of the sec(x) function: sec(x)=2π0t2x/πt2+1dt|x|<π2
If we put x=π4 sec(π4)=2π0tt2+1dt0tt2+1dt=π2sec(π4)=π2
Then L=120s1+s2ds=π22
For M: M=1w21+w4dw=1011+r4dr(r1w)
Hence M=1011+r4dr=1210(1+r2)+(1r2)1+r4dr=12101+r21+r4drF+12101r21+r4drG
F=101+x21+x4dx=101x2+11x2+x2dx=101x2+11x2+x2dx=101x2+1(x1x)2+2dx=01w2+2dx(wx1x)=2201r2+1dx(r2w22)=π22
G=101x21+x4dx=1011x21x2+x2dx=1011x21x2+x2dx=1011x2(x+1x)22dx=21w22dx(wx+1x)=1222[1w+21w2]dx=122[ln(w+2)ln(w2)]2=12[ln(w2+1w21)]2=12[arccoth(w2)]2=arccoth(2)2
Hence M=12F+12G=π42+arccoth(2)22
Q=LM=π42arccoth(2)22
Therefore I=4J4K2Q=π1π2π22+arccoth(2)2
Finally, using the following identity: arccoth(x)=sign(x)arcsinh(1x21)
We have arccoth(2)=arcsinh(1)=ln(1+2)
Therefore 10x21+x21x1+xdx=ln(1+2)2+(112)π21

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...