Nice integral involving 1F1
Today we show the proof of this mysterious integral posted by @infseriesbot. ∫π0e−zcosxcos(ax−zsinx)(2cosx2)2bdx=πΓ(2b+1)Γ(a+b+1)Γ(b−a+1)1F1[a−b1+a+b;z]
This integral resembles another one we previously solved using the Cauchy integral formula and it turned out that this also can be solved using contour integration.
Proof
First, note that the function f(x)=e−zcosxcos(ax−zsinx)(2cosx2)2b
Is an even function...
Hence we can write: I=∫π0e−zcosxcos(ax−zsinx)(2cosx2)2bdx=12∫π−πe−zcosxcos(ax−zsinx)(2cosx2)2bdx
Expand the integrand using the Euler's formula:
I=12∫π−πe−zcosxcos(ax−zsinx)(2cosx2)2bdx=12∫π−πe−zcosx(eiax−izsinx+e−iax+izsinx2)(eix2+e−ix2)2bdx=14∫π−π(eia−z(cosx−isinx)+e−iax+z(−cosx+izsinx))(eix2+e−ix2)2bdx=14∫π−π(eiaxe−z(cosx−isinx)+e−iaxe+z(−cosx+izsinx))(eix2+e−ix2)2bdx=14∫π−π(eiaxe−zeix+e−iaxe+ze−ix)(eix2+e−ix2)2b⏟Adx
Expand A with the binomial theorem:
A=(eix2+e−ix2)2b=∞∑j=0(2bj)eix(b−j)
Hence
I=14∫π−π(eiaxe−zeix+e−iaxe+ze−ix)(eix2+e−ix2)2bdx=14∫π−π(eiaxe−zeix+e−iaxe+ze−ix)∞∑j=0(2bj)eix(b−j)dx
Now, do the following substitution:
eix=w
dx=dwwi
Our integral is transformed in a contour integral round the unit circle:
I=14∫π−π(eiaxe−zeix+e−iaxe+ze−ix)∞∑j=0(2bj)eix(b−j)dx=14∮|w|=1(wae−zw+w−ae+zw−1)∑∞j=0(2bj)w(b−j)widw=14i∮|w|=1(wa−1e−zw+w−a−1ezw−1)∞∑j=0(2bj)w(b−j)dw=14i∮|w|=1∞∑j=0(2bj)w(a+b−j−1)e−zwdw⏟J+14i∮|w|=1∞∑j=0(2bj)w(b−a−j−1)ezw−1dw⏟K
Expand e−zw,e−zw−1 in J and K and apply the residue theorem:
J=∮|w|=1∞∑j=0(2bj)w(a+b−j−1)e−zwdw=∮|w|=1∞∑j=0∞∑k=0(2bj)w(a+b−j+k−1)(−z)kk!⏟g(w)dw=2πiRes(g,0)
K=∮|w|=1∞∑j=0(2bj)w(b−a−j−1)ezw−1dw=∮|w|=1∞∑j=0∞∑k=0(2bj)w(b−a−j−k−1)(−z)nk!⏟h(w)dw=2πiRes(h,0)
The functions g(w),h(w) have a singularity at w=0.
To find the residue we need to know the coefficient of w−1
For J: w−1=wa+b−j+k−1⟹j=a+b+k
For K:
w−1=wb−a−j−k−1⟹j=b−a−k
Therefore
J=2πiRes(g,0)=2πi∞∑k=0(2ba+b+k)(−z)kk!
K=2πiRes(h,0)=2πi∞∑k=0(2bb−a−k)(−z)kk!
Hence, from (1):
I=14iJ+14iK=π2∞∑k=0(2ba+b+k)(−z)kk!+π2∞∑k=0(2bb−a−k)(−z)kk!
Using the property (nn−m)=(nm):
(2bb−a−k)=(2b2b−a−b−k)=(2ba+b+k)
Therefore
I=π∞∑k=0(2ba+b+k)(−z)kk!
From the formula that relates the binomial coefficient to the Pochhammer symbol (vm)=(v−m+1)mm! :
(2ba+b+k)=(b−a−k+1)a+b+k(a+b+k)!=(b−a−k+1)a+b+kΓ(a+b+k+1)=(b−a−k+1)a+b+kΓ(a+b+1)(a+b+1)k
Now, from the rule (x)n+m=(x)n(x+n)m we have
(2ba+b+k)=(b−a−k+1)a+b+kΓ(a+b+k+1)(a+b+1)k=(b−a−k+1)k(b−a+1)a+bΓ(a+b+k+1)(a+b+1)k
From definition
(b−a+1)a+b=Γ(2b+1)Γ(b−a+1)
Therefore
(2ba+b+k)=(b−a−k+1)kΓ(2b+1)Γ(a+b+1)Γ(b−a+1)(a+b+1)k
Hence, from (2):
I=∫π0e−zcosxcos(ax−zsinx)(2cosx2)2bdx=π∞∑j=0(2ba+b+k)(−z)kk!=π∞∑j=0(b−a−k+1)kΓ(2b+1)Γ(a+b+1)Γ(b−a+1)(a+b+1)k(−z)kk!=πΓ(2b+1)Γ(a+b+1)Γ(b−a+1)∞∑k=0(b−a−k+1)k(a+b+1)k(−1)kzkk!=πΓ(2b+1)Γ(a+b+1)Γ(b−a+1)∞∑k=0(a−b)k(a+b+1)kzkk!((b−a−k+1)k(−1)k=(a−b)k)
The last series satisfy the definition of 1F1 also called Confluent hypergeometric function:
∞∑k=0(a−b)k(a+b+1)kzkk!=1F1[a−b1+a+b;z]
Hence, we can conclude
∫π0e−zcosxcos(ax−zsinx)(2cosx2)2bdx=πΓ(2b+1)Γ(a+b+1)Γ(b−a+1)1F1[a−b1+a+b;z]
No comments:
Post a Comment