Sunday, November 7, 2021

Residue theorem VII

mysterious integral

Nice integral involving 1F1


Today we show the proof of this mysterious integral posted by @infseriesbot. π0ezcosxcos(axzsinx)(2cosx2)2bdx=πΓ(2b+1)Γ(a+b+1)Γ(ba+1)1F1[ab1+a+b;z]
This integral resembles another one we previously solved using the Cauchy integral formula and it turned out that this also can be solved using contour integration.

Proof

First, note that the function f(x)=ezcosxcos(axzsinx)(2cosx2)2b
Is an even function...

Hence we can write: I=π0ezcosxcos(axzsinx)(2cosx2)2bdx=12ππezcosxcos(axzsinx)(2cosx2)2bdx
Expand the integrand using the Euler's formula: I=12ππezcosxcos(axzsinx)(2cosx2)2bdx=12ππezcosx(eiaxizsinx+eiax+izsinx2)(eix2+eix2)2bdx=14ππ(eiaz(cosxisinx)+eiax+z(cosx+izsinx))(eix2+eix2)2bdx=14ππ(eiaxez(cosxisinx)+eiaxe+z(cosx+izsinx))(eix2+eix2)2bdx=14ππ(eiaxezeix+eiaxe+zeix)(eix2+eix2)2bAdx
Expand A with the binomial theorem: A=(eix2+eix2)2b=j=0(2bj)eix(bj)
Hence I=14ππ(eiaxezeix+eiaxe+zeix)(eix2+eix2)2bdx=14ππ(eiaxezeix+eiaxe+zeix)j=0(2bj)eix(bj)dx
Now, do the following substitution: eix=w
dx=dwwi
Our integral is transformed in a contour integral round the unit circle: I=14ππ(eiaxezeix+eiaxe+zeix)j=0(2bj)eix(bj)dx=14|w|=1(waezw+wae+zw1)j=0(2bj)w(bj)widw=14i|w|=1(wa1ezw+wa1ezw1)j=0(2bj)w(bj)dw=14i|w|=1j=0(2bj)w(a+bj1)ezwdwJ+14i|w|=1j=0(2bj)w(baj1)ezw1dwK
Expand ezw,ezw1 in J and K and apply the residue theorem: J=|w|=1j=0(2bj)w(a+bj1)ezwdw=|w|=1j=0k=0(2bj)w(a+bj+k1)(z)kk!g(w)dw=2πiRes(g,0)
K=|w|=1j=0(2bj)w(baj1)ezw1dw=|w|=1j=0k=0(2bj)w(bajk1)(z)nk!h(w)dw=2πiRes(h,0)
The functions g(w),h(w) have a singularity at w=0.

To find the residue we need to know the coefficient of w1

For J: w1=wa+bj+k1j=a+b+k
For K: w1=wbajk1j=bak
Therefore J=2πiRes(g,0)=2πik=0(2ba+b+k)(z)kk!
K=2πiRes(h,0)=2πik=0(2bbak)(z)kk!
Hence, from (1): I=14iJ+14iK=π2k=0(2ba+b+k)(z)kk!+π2k=0(2bbak)(z)kk!
Using the property (nnm)=(nm): (2bbak)=(2b2babk)=(2ba+b+k)
Therefore I=πk=0(2ba+b+k)(z)kk!
From the formula that relates the binomial coefficient to the Pochhammer symbol (vm)=(vm+1)mm! : (2ba+b+k)=(bak+1)a+b+k(a+b+k)!=(bak+1)a+b+kΓ(a+b+k+1)=(bak+1)a+b+kΓ(a+b+1)(a+b+1)k
Now, from the rule (x)n+m=(x)n(x+n)m we have (2ba+b+k)=(bak+1)a+b+kΓ(a+b+k+1)(a+b+1)k=(bak+1)k(ba+1)a+bΓ(a+b+k+1)(a+b+1)k
From definition (ba+1)a+b=Γ(2b+1)Γ(ba+1)
Therefore (2ba+b+k)=(bak+1)kΓ(2b+1)Γ(a+b+1)Γ(ba+1)(a+b+1)k
Hence, from (2): I=π0ezcosxcos(axzsinx)(2cosx2)2bdx=πj=0(2ba+b+k)(z)kk!=πj=0(bak+1)kΓ(2b+1)Γ(a+b+1)Γ(ba+1)(a+b+1)k(z)kk!=πΓ(2b+1)Γ(a+b+1)Γ(ba+1)k=0(bak+1)k(a+b+1)k(1)kzkk!=πΓ(2b+1)Γ(a+b+1)Γ(ba+1)k=0(ab)k(a+b+1)kzkk!((bak+1)k(1)k=(ab)k)
The last series satisfy the definition of 1F1 also called Confluent hypergeometric function: k=0(ab)k(a+b+1)kzkk!=1F1[ab1+a+b;z]
Hence, we can conclude π0ezcosxcos(axzsinx)(2cosx2)2bdx=πΓ(2b+1)Γ(a+b+1)Γ(ba+1)1F1[ab1+a+b;z]

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...