Nice Euler sum involving the Apéry's constant ζ(3) and the Catalan's constant β(2)
Today we show the proof of this nice Euler sum proposed by @Ali39342137 ∞∑n=0(−1)n−1H2n2n+1(Hn2−Hn−12)=π2ln(2)8−π2β(2)+2132ζ(3) The proof will rely on some properties of the digamma function and the use of Fourier series.
Proof:
Recall the following integral for the difference of digamma functions (proof in Appendix 1): ∫10xμ−11+xdx=12[ψ(μ+12)−ψ(μ2)] Let n∈N. If we put μ−1=n ∫10xn1+xdx=12[ψ(n2+1)−ψ(n2+12)] Hence ∫10xn1+xdx=12[ψ(n2+1)+γ−(ψ(n−12+1)+γ)]=12[Hn2−Hn−12] ⟹Hn2−Hn−12=2∫10xn1+xdx Therefore ⟹(−1)n−1H2n2n+1(Hn2−Hn−12)=2∫1011+x(−1)n−1H2n2n+1xndx Hence S=∞∑n=0(−1)n−1H2n2n+1(Hn2−Hn−12)=∞∑n=02∫1011+x(−1)n−1H2n2n+1xndx=2∫1011+x(∞∑n=0(−1)n−1H2n2n+1xn)dx (Fubini-Tonelli)=4∫1011+w2(∞∑n=0(−1)n−1H2n2n+1w2n+1)dw(w2↦x) We proved previously (proof in Appendix 2): ∞∑n=0(−1)n−1H2n2n+1w2n+1=12arctan(w)ln(1+w2) Hence S=∞∑n=0(−1)n−1H2n2n+1(Hn2−Hn−12)=2∫10arctan(w)ln(1+w2)1+w2dw We just have to find the integral in the right hand side S=2∫10arctan(w)ln(1+w2)1+w2dw=2∫π40θln(1+tan2(θ))dθ(θ=arctan(w))=2∫π40θln(cos2(θ)cos2(θ)+sin2(θ)cos2(θ))dθ=2∫π40θln(1cos2(θ))dθ=−4∫π40θln(cos(θ))dθ=−∫π20tln(cos(t2))dt(t↦2θ)=−∫π20tln(22cos(t2))dt=ln(2)∫π20tdt−∫π20tln(2cos(t2))dt=π2ln(2)8−∫π20tln(2cos(t2))dt⏟I We can expand the integrand in I with the following Fourier series: ∞∑k=1(−1)k−1cos(kx)k=ln(2cos(x2))−π<x<π Therefore I=∫π20tln(2cos(t2))dt=∫π20t∞∑k=1(−1)k−1cos(kt)kdt=∞∑k=1(−1)k−1k∫π20tcos(kt)dt (Fubini-Tonelli)=∞∑k=1(−1)k−1k3∫kπ20scos(s)ds(s↦kt)IBP=∞∑k=1(−1)k−1k3[ssin(s)|kπ20−∫kπ20sin(s)ds]=∞∑k=1(−1)k−1k3[(kπ2)sin(kπ2)+cos(kπ2)−1]=π2∞∑k=1(−1)k−1sin(kπ2)k2+∞∑k=1(−1)k−1cos(kπ2)k3−∞∑k=1(−1)k−1k3 Note that (sin(kπ2))k=(1,0,−1,0,1,0,−1,...) (cos(kπ2))k=(0,−1,0,1,0,−1,0,...) Therefore I=π2∞∑k=1(−1)k−1sin(kπ2)k2+∞∑k=1(−1)k−1cos(kπ2)k3−∞∑k=1(−1)k−1k3=π2∞∑k=1(−1)k−1(2k−1)2+∞∑k=1(−1)k−1(2k)3−∞∑k=1(−1)k−1k3=π2∞∑k=1(−1)k−1(2k−1)2−78∞∑k=1(−1)kk3=π2β(2)−78η(3) (eta and beta dirichlet functions) Finally, using the identity: η(v)=(1−21−v)ζ(v) I=π2β(2)−2132ζ(3) Therefore S=∞∑n=0(−1)n−1H2n2n+1(Hn2−Hn−12)=π2ln(2)8−π2β(2)+2132ζ(3)
Appendix 1
We show the proof of this nice integral representation ∫10xμ−11+xdx=12[ψ(μ+12)−ψ(μ2)]
Proof
∫10xμ−11+xdx=∫10∞∑j=0(−1)jxjxμ−1dx=∞∑j=0(−1)j∫10xj+μ−1dx=∞∑j=0(−1)jj+μ=∞∑j=0[12j+μ−12j+1+μ]=12∞∑j=0[1j+μ2−1j+1+μ2]=14∞∑j=01(j+μ2)(j+1+μ2) The difference between two digamma functions may be expressed as ψ(x)−ψ(y)=(x−y)∞∑j=01(j+x)(j+y) If we put x=μ2,y=μ+12 ∫10xμ−11+xdx=14∞∑j=01(j+μ2)(j+1+μ2)=12[ψ(μ+12)−ψ(μ2)]
Appendix 2
∞∑n=0(−1)n−1H2n2n+1x2n+1=12arctan(x)ln(1+x2)
Proof
One of the special cases of the Gauss hypergometric is the following: 2F2(a,12+a;32;z2)=1(2−4a)z((1+z)1−2a−(1−z)1−2a) If we put a=t2,z=ix: 2F2(t2,12+t2;32;−x)=12(1−t)ix((1+ix)1−t−(1−ix)1−t) From the definition of 2F1: 2F1(t2,t+12;32,−x)=∞∑n=0(t2)n(1+t2)n(32)n(−1)nxnn!=∞∑n=04n(t2)n(1+t2)n4n(1)n(32)n(−1)nxn=∞∑n=0(t)2n(2)2n(−1)nxn Therefore ∞∑n=0(t)2n(2)2n(−1)nxn=12(1−t)ix((1+ix)1−t−(1−ix)1−t) Differentiating with respect to t: ddt|t=1∞∑n=0(t)2n(2)2n(−1)nxn=∞∑n=0(1)2n[ψ(2n+1)+γ](2)2n(−1)n=∞∑n=0(−1)nH2n2n+1x2n Hence ∞∑n=0(−1)nH2n2n+1x2n=ddt|t=1[12(1−t)ix((1+ix)1−t−(1−ix)1−t)]=limt→1[−i((1+ix)1−t−(1−ix)1−t)2(1−t)2x⏟=0−i((1−ix)1−tln(1−ix)−(1+ix)1−tln(1+ix))2(1−t)x]=limt→1−i((1−ix)1−tln(1−ix)−(1+ix)1−tln(1+ix))2(1−t)x=i(ln2(1+ix)−ln2(1−ix))4x (L'Hôpital's rule) =i(ln(1+ix)−ln(1−ix))(ln(1+ix)+ln(1−ix))4x=i(ln(1+ix)−ln(1−ix))(ln(1+ix)+ln(1−ix))4x=12x[−i2ln(1−ix1+ix)ln(1+x2)]=12xarctan(x)ln(1+x2) Therefore we can conclude ∞∑n=0(−1)nH2n2n+1x2n+1=12arctan(x)ln(1+x2)
No comments:
Post a Comment