Loading [MathJax]/jax/output/HTML-CSS/jax.js

Thursday, December 30, 2021

Euler's work VIII

Euler sums

Nice Euler sum involving the Apéry's constant ζ(3) and the Catalan's constant β(2)


Today we show the proof of this nice Euler sum proposed by @Ali39342137 n=0(1)n1H2n2n+1(Hn2Hn12)=π2ln(2)8π2β(2)+2132ζ(3) The proof will rely on some properties of the digamma function and the use of Fourier series.

Proof:

Recall the following integral for the difference of digamma functions (proof in Appendix 1): 10xμ11+xdx=12[ψ(μ+12)ψ(μ2)] Let nN. If we put μ1=n 10xn1+xdx=12[ψ(n2+1)ψ(n2+12)] Hence 10xn1+xdx=12[ψ(n2+1)+γ(ψ(n12+1)+γ)]=12[Hn2Hn12] Hn2Hn12=210xn1+xdx Therefore (1)n1H2n2n+1(Hn2Hn12)=21011+x(1)n1H2n2n+1xndx Hence S=n=0(1)n1H2n2n+1(Hn2Hn12)=n=021011+x(1)n1H2n2n+1xndx=21011+x(n=0(1)n1H2n2n+1xn)dx (Fubini-Tonelli)=41011+w2(n=0(1)n1H2n2n+1w2n+1)dw(w2x) We proved previously (proof in Appendix 2): n=0(1)n1H2n2n+1w2n+1=12arctan(w)ln(1+w2) Hence S=n=0(1)n1H2n2n+1(Hn2Hn12)=210arctan(w)ln(1+w2)1+w2dw We just have to find the integral in the right hand side S=210arctan(w)ln(1+w2)1+w2dw=2π40θln(1+tan2(θ))dθ(θ=arctan(w))=2π40θln(cos2(θ)cos2(θ)+sin2(θ)cos2(θ))dθ=2π40θln(1cos2(θ))dθ=4π40θln(cos(θ))dθ=π20tln(cos(t2))dt(t2θ)=π20tln(22cos(t2))dt=ln(2)π20tdtπ20tln(2cos(t2))dt=π2ln(2)8π20tln(2cos(t2))dtI We can expand the integrand in I with the following Fourier series: k=1(1)k1cos(kx)k=ln(2cos(x2))π<x<π Therefore I=π20tln(2cos(t2))dt=π20tk=1(1)k1cos(kt)kdt=k=1(1)k1kπ20tcos(kt)dt (Fubini-Tonelli)=k=1(1)k1k3kπ20scos(s)ds(skt)IBP=k=1(1)k1k3[ssin(s)|kπ20kπ20sin(s)ds]=k=1(1)k1k3[(kπ2)sin(kπ2)+cos(kπ2)1]=π2k=1(1)k1sin(kπ2)k2+k=1(1)k1cos(kπ2)k3k=1(1)k1k3 Note that (sin(kπ2))k=(1,0,1,0,1,0,1,...) (cos(kπ2))k=(0,1,0,1,0,1,0,...) Therefore I=π2k=1(1)k1sin(kπ2)k2+k=1(1)k1cos(kπ2)k3k=1(1)k1k3=π2k=1(1)k1(2k1)2+k=1(1)k1(2k)3k=1(1)k1k3=π2k=1(1)k1(2k1)278k=1(1)kk3=π2β(2)78η(3) (eta and beta dirichlet functions) Finally, using the identity: η(v)=(121v)ζ(v) I=π2β(2)2132ζ(3) Therefore S=n=0(1)n1H2n2n+1(Hn2Hn12)=π2ln(2)8π2β(2)+2132ζ(3)

Appendix 1

We show the proof of this nice integral representation 10xμ11+xdx=12[ψ(μ+12)ψ(μ2)]

Proof

10xμ11+xdx=10j=0(1)jxjxμ1dx=j=0(1)j10xj+μ1dx=j=0(1)jj+μ=j=0[12j+μ12j+1+μ]=12j=0[1j+μ21j+1+μ2]=14j=01(j+μ2)(j+1+μ2) The difference between two digamma functions may be expressed as ψ(x)ψ(y)=(xy)j=01(j+x)(j+y) If we put x=μ2,y=μ+12 10xμ11+xdx=14j=01(j+μ2)(j+1+μ2)=12[ψ(μ+12)ψ(μ2)]

Appendix 2

n=0(1)n1H2n2n+1x2n+1=12arctan(x)ln(1+x2)

Proof

One of the special cases of the Gauss hypergometric is the following: 2F2(a,12+a;32;z2)=1(24a)z((1+z)12a(1z)12a) If we put a=t2,z=ix: 2F2(t2,12+t2;32;x)=12(1t)ix((1+ix)1t(1ix)1t) From the definition of 2F1: 2F1(t2,t+12;32,x)=n=0(t2)n(1+t2)n(32)n(1)nxnn!=n=04n(t2)n(1+t2)n4n(1)n(32)n(1)nxn=n=0(t)2n(2)2n(1)nxn Therefore n=0(t)2n(2)2n(1)nxn=12(1t)ix((1+ix)1t(1ix)1t) Differentiating with respect to t: ddt|t=1n=0(t)2n(2)2n(1)nxn=n=0(1)2n[ψ(2n+1)+γ](2)2n(1)n=n=0(1)nH2n2n+1x2n Hence n=0(1)nH2n2n+1x2n=ddt|t=1[12(1t)ix((1+ix)1t(1ix)1t)]=limt1[i((1+ix)1t(1ix)1t)2(1t)2x=0i((1ix)1tln(1ix)(1+ix)1tln(1+ix))2(1t)x]=limt1i((1ix)1tln(1ix)(1+ix)1tln(1+ix))2(1t)x=i(ln2(1+ix)ln2(1ix))4x (L'Hôpital's rule) =i(ln(1+ix)ln(1ix))(ln(1+ix)+ln(1ix))4x=i(ln(1+ix)ln(1ix))(ln(1+ix)+ln(1ix))4x=12x[i2ln(1ix1+ix)ln(1+x2)]=12xarctan(x)ln(1+x2) Therefore we can conclude n=0(1)nH2n2n+1x2n+1=12arctan(x)ln(1+x2)

No comments:

Post a Comment

Series of the day

Series involving the digamma and the zeta functions The sum 1(n+1)pnq ...