Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Friday, January 28, 2022

Continued fractions II

Kummer's transformation

Continued fractions for confluent hypergeometric functions


Today we show the proof of this nice continued fraction proposed by @nntaleb xex1=1x2+x32x4+2x53x6+ The proof will relly on the continued fractions theorem for confluent hypergeometric functions

Proof

Note that ex=n=0xnn!=n=0(1)n(1)nxnn!=1F1(1;1;x) where (x)n=x(x+1)(x+2)(x+n1) is the Pochhhammer polynomial or rising factorial of degree n and 1F1(a;b;z) is the confluent hypergeometric function, also denoted by M(a;b;z). There is a continued fractions theorem for confluent hypergeometric functions:

Thorem Consider the function:

1F1(b;c;z)=n=0(b)n(c)nznn! Let {an} be a sequence of complex numbers defined by a2n=b+n(c+2n1)(c+2n)n=1,2,3,... a2n+1=cb+n(c+2n)(c+2n+1)n=0,1,2,3,... Then 1+Kn=1(anz1)=1F1(b;c;z)1F1(b+1;c+1;z)zC

Corollary If we let b0 and making the transformation c+1c

11cz1+1c(c+1)z1c(c+1)(c+2)z1+2(c+2)(c+3)z1c+1(c+3)(c+4)z1+3(c+4)(c+5)z1=11F1(1;c;z) 1F1(1;c;z)=111cz1+1c(c+1)z1c(c+1)(c+2)z1+2(c+2)(c+3)z1c+1(c+3)(c+4)z1+3(c+4)(c+5)z1=11zc+zc+1czc+1+2zc+3(c+1)zc+4+3zc+5 Applying () to ex: ex=1F1(1;1;x)=11x1+x2x3+2x42x5+3z6 Making the transformation xx: ex=1ex=11+x1x2+x32x4+2x53z6+ ex=1+x1x2+x32x4+2x53z6+ ex1=x1x2+x32x4+2x53z6+ Finally, taking the reciprocal: xex1=1x2+x32x4+2x53z6+

Wednesday, January 26, 2022

Confluent hypergeometric function II

Kummer's transformation

Kummer's transformation for 1F1


Here is the proof of this transformation posted by @infseriesbot n=0zn(a)n+1=ezn=0(z)n(a+n)

Proof:

Recall the definition of the Pochhammer polynomial (rising factorial) (a)n=a(a+1)(a+n1) Hence S=n=0zn(a)n+1=n=0zna(a+1)(a+n)=n=0zna[(a+1)(a+n)]=n=0zna(a+1)n=1an=0(1)n(a+1)nzn(1)n=1an=0(1)n(a+1)nznn!=1a1F1(1,a+1,z) 1F1(a,b,z) is the confluent hypergeometric function, also denoted M(a,b,z). This function satisfies the Kummer’s Transformation: 1F1(a,b,z)=ez1F1(ba,b,z) Therefore 1a1F1(1,a+1,z)=eza1F1(a,a+1,z)=ezan=0(a)n(a+1)n(z)n=ezan=0a(a+1)(a+n1)(a+1)(a+2)(a+n1)(a+n)(z)n=ezan=0a(a+1)(a+n1)(a+1)(a+2)(a+n1)(a+n)(z)n=ezan=0a(a+n)(z)n=ezn=0(z)n(a+n) Hence n=0zn(a)n+1=ezn=0(z)n(a+n)

Integral of the day XXII

An integral involving the Lobachvesky integral formula

Nnice integral representation of π


Today we show the proof of this integral posted by @integralsbot 0lncos2xx2dx=π For the proof we will use the Lobachevsky integral formula.

Proof

Recall the Lobachevsky integral formula:

Proposition. Let f(x) a complex-valued, π-periodic function that is absolutely integrable over a single period. Therefore 0sin2xx2f(x)dx=0sinxxf(x)dx=π20f(x)dx Note that 0lncos2xx2dx=0sin2xx2lncos2xsin2xdx Since the function f(x)=lncos2xsin2xdx is π-periodic it follows that I=0lncos2xx2dx=0sin2xx2lncos2xsin2xdx=π20lncos2xsin2xdx Hence I=π20lncos2xsin2xdx=2π20lncosxsin2xdx=210ln(w)(1w2)32dw(wcosx)IBP=2ln(w)w1w2|10=021011w2dw=2arcsin(1)=π Therefore 0lncos2xx2dx=π

Sunday, January 23, 2022

Integral of the day XXI

Integral found on Twitter

Integral involving binomial series


Today we show the proof of this integral proposed by @BenriBot_ccbs. 10arcsin(x)1+xdx=π2ln(8)πln(1+2) The proof relies on the use of binomial series.

Proof

I=10arcsin(x)1+xdx=210arcsin(w)w1+w2dw(wx)IBP=ln(w2+1)arcsin(w)|1010ln(w2+1)1w2dw=π2ln(2)10n=1(1)n+1nw2n1w2dw=π2ln(2)n=1(1)n+1n10w2n(1w2)12dw=π2ln(2)12n=1(1)n+1n10sn12(1s)12ds(sw2)=π2ln(2)12n=1(1)n+1nB(n+12,12)=π2ln(2)12n=1(1)n+1nΓ(n+12)πn! From the formulas Γ(n+12)=(2n1)!!π2n (2n)!!=2nn! (2nn)=22n(2n1)!!(2n)!! we have I=π2ln(2)12n=1(1)n+1n(2n1)!!π2nn! from (1)=π2ln(2)+π2n=1(1)n(2n1)!!n(2n)!! from (2)=π2ln(2)+π2n=1(1)n(2nn)22nn from (3) We previously proved that n=1(2nn)22nnxn=2ln(21x+1) If we put x=1 n=1(2nn)22nn(1)n=2ln(22+1) Hence, we can conclude 10arcsin(x)1+xdx=π2ln(8)πln(1+2)

Saturday, January 22, 2022

Integral of the day XX

Apéry's constant

Nice integral representation of the Apéry's constant ζ(3)


Today we show the proof of the following integral representation of the Aperys constant posted by @sounansya_29 327π40xarctanh(tanx)dx=ζ(3) The proof relies on some properties of the arctanh and arctan functions and Fourier series.

Proof

Recall the definition in terms of logarithms of arctanh(z) arctanh(z)=12ln(1+z1z) Therefore I=π40xarctanh(tanx)dx=12π40xln(1+tanx1tanx)dx=121arctan(w1w+1)ln(w)1+w2dw(w1+tanx1tanx) Recall the following addition formula for arctan(x): arctan(w)π4=arctan(w1w+1) Hence I=π40xarctanh(tanx)dx=121arctan(w1w+1)ln(w)1+w2dw=121(arctan(w)π4)ln(w)1+w2dw=121arctan(w)ln(w)1+w2dwJπ81ln(w)1+w2dwK K=1ln(w)1+w2dw=10ln(s)1+s2ds(s1w)=10n=0(1)ns2nln(s)ds=n=0(1)n10s2n(ddt|t=0+st)ds=ddt|t=0+n=0(1)n10s2n+tds=ddt|t=0+n=0(1)n2n+t+1ds=n=0[ddt|t=0+(1)n2n+t+1]ds=n=0(1)n(2n+1)2=β(2) J=1arctan(w)ln(w)1+w2dw=10arctan(1s)ln(1s)1+s2ds(w1s)=10(arctan(s)+π2)ln(s)1+s2(arctan(1b)=arctan(b)sign(b)π2)=10arctan(s)ln(s)1+s2dsπ210ln(s)1+s2ds=10arctan(s)ln(s)1+s2ds+π2β(2)=π40tln(tan(t))dt+π2β(2)=π40tln(cot(t))dt+π2β(2) Recall the following Fourier series k=1cos((2k1)x)2k1=12ln(cotx2) Hence J=π40tln(cot(t))dt+π2β(2)=2π40tk=1cos((2k1)2t)2k1dt+π2β(2)=k=122k1π40tcos((2k1)2t)dt+π2β(2)=12k=11(2k1)3π(2k1)20ycos(y)dy+π2β(2)IBP=12k=11(2k1)3[sin(y)y|π(2k1)20π8(2k1)0sin(y)dy]+π2β(2)=12k=11(2k1)3[sin(π(2k1)2)π(2k1)2+cos(π(2k1)2)1]+π2β(2)=π4k=1sin(π(2k1)2)(2k1)212k=1cos(π(2k1)2)(2k1)3+12k=11(2k1)3+π2β(2)=π4k=1cos(πk)(2k1)212k=1sin(πk)(2k1)3+12λ(3)+π2β(2) Note that (sin(πk))kN=(0,0,0,0,...) (cos(πk))kN=(1,1,1,1,1,..) Therefore J=π4k=1(1)k(2k1)2+12λ(3)+π2β(2)=π4β(2)+12λ(3) From the identity λ(v)=(12v)ζ(v) we have J=1arctan(w)ln(w)1+w2dw=716ζ(3)+π4β(2) Hence I=π40xarctanh(tanx)dx=12Jπ8K=732ζ(3)π8β(2)+π8β(2) Therefore, we can conclude 327π40xarctanh(tanx)dx=ζ(3)

Sunday, January 16, 2022

Euler's work XIX

Another great Euler sum

Another Euler sum involving the Catalan's constant β(2)


Today we show the proof of this nice Euler sum proposed by @Ali39342137 n=1(2nn)(H2nHn)22n(2n1)2=3πln(2)2+2π2β(2) For the proof we will use some properties of Harmonic numbers and Fourier series.

Proof

We need the following integral representation (proof in Appendix 1): HnH2n+ln(2)=10x2n1+xdx and the following series representation (proof in Appendix 2): n=1(2nn)22n(2n1)2x2n=1x2+xarcsin(x)1|x|1 Therefore n=1(2nn)(H2nHn)22n(2n1)2=n=1(2nn)22n(2n1)2(ln(2)10x2n1+xdx) from (1)=ln(2)n=1(2nn)22n(2n1)2n=1(2nn)22n(2n1)210x2n1+xdx From (2) if we put x=1 n=1(2nn)22n(2n1)2=arcsin(1)1=π21 Hence n=1(2nn)(H2nHn)22n(2n1)2=πln(2)2ln(2)1011+x(n=1(2nn)22n(2n1)2x2n)dx=πln(2)2ln(2)101x2+xarcsin(x)11+xdx from (2) =πln(2)2ln(2)101x21+xdxI10xarcsin(x)1+xdxJ+1011+xdxK I=101x21+xdx=410w2(1+w2)2dw(w1x21+x)=411(1+s2)2ds(s1w)=4π2π2sec2(w)(1+tan2w)2dw(warctan(s))=4π2π2cos2(w)dw(tan2(θ)+1=sec2(θ))=2π2π2cos(2w)dw+12π2π4dw(2cos2(θ)1=cos(2θ))=2π2π4cos(2w)dw+π8=ππ2cos(r)dr+π2(r2w)=1+π2 J=10xarcsin(x)1+xdxIBP=[xarctan(x)ln(1+x)arctan(x)]1010x1x2dx+10ln(x+1)1x2dx=π2πln(2)2[1x2]10+10ln(x+1)1x2dx=π2πln(2)21+10ln(x+1)1x2dx=π2πln(2)21+π20ln(1+cos(w))dw(warccos(x))=π2πln(2)21+π20ln(2cos2(w2))dw(cos(2θ)=2cos2(θ)1)=π2πln(2)21+ln(2)π20dw+2π20ln(cos(w2))dw=π212π20ln(cos(w2))dw Recall the Fourier series: k=1(1)k1cos(kx)k=ln(2cos(x2)) Therefore J=π212π20ln(cos(w2))dw=π212π20k=1(1)k1cos(kw)kdw2ln(2)π20dw=π2πln(2)12k=1(1)k1kπ20cos(kw)dw=π2πln(2)12k=1(1)k1k2kπ20cos(r)dr=π2πln(2)12k=1(1)k1k2[sin(r)]kπ20=π2πln(2)12k=1(1)k1sin(kπ2)k2 Note that (sin(kπ2))kN=(1,0,1,0,1,0,1,0,..) Hence J=π2πln(2)1+2k=1(1)k1(2k1)2=π2πln(2)1+2β(2) K=1011+xdx=[ln(1+x)]10=ln(2) Therefore n=1(2nn)(H2nHn)22n(2n1)2=πln(2)2ln(2)IJ+K=3πln(2)2+2π2β(2) Hence, we can conclude n=1(2nn)(H2nHn)22n(2n1)2=3πln(2)2+2π2β(2)

Appendix 1

ln(2)+HnH2n=10x2n1+xdx

Proof

10x2n1+xdxIBP=[ln(1+x)x2n]102n10ln(1+x)x2n1dx=ln(2)2n10j=1(1)j+1jxjx2n1dx=ln(2)2nj=1(1)j+1j10xj+2n1dx=ln(2)+2nj=1(1)jj(j+2n)=ln(2)+nj=11j(j+n)2nj=11j(j+2n) From the series expansion for Harmonic numbers: Hx=xk=11k(x+k) we obtain ln(2)+HnH2n=10x2n1+xdx

Appendix 2

n=1(2nn)22n(2n1)2x2n=1x2+xarcsin(x)1|x|1

Proof

Recall the following basic series expansion: 11x2=n=0(2nn)22nx2n|x|<1 Dividing by x2 1x21x2=n=0(2nn)22nx2n2=1x2+n=1(2nn)22nx2n2 1x21x21x2=n=1(2nn)22nx2n2 Integrating from 0 to r: r0[1x21x21x2]dx=n=1(2nn)22nr0x2n2dx=n=1(2nn)22n(2n1)r2n1 - Note [1x21x21x2]dx=1x21x2dx1x2dx=1x21x2dx+1x+C=csc2(w)dw+1x+C(xsin(w))=cot(w)+1x+C=cot(arcsin(x))+1x+C=1x2x+1x+C(arcsin(x)=arccot(1x2x))=11x2x+C Hence r0[1x21x21x2]dx=[11x2x]r0=11r2rlim Therefore \frac{1-\sqrt{1-r^2}}{r} = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2^{2n}(2n-1)}r^{2n-1} Dividing by r: \frac{1-\sqrt{1-r^2}}{r^2} = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2^{2n}(2n-1)}r^{2n-2} Integrating from 0 to t: \int_{0}^{t} \frac{1-\sqrt{1-r^2}}{r^2} dt = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2^{2n}(2n-1)}\int_{0}^{t} r^{2n-2} dt = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2^{2n}(2n-1)^2}t^{2n-1} Note that \begin{align*} \int \frac{1-\sqrt{1-r^2}}{r^2} dr =& \int \frac{1}{r^2} dr - \int \frac{\sqrt{1-r^2}}{r^2} dr \\ =& -\frac{1}{r} - \int \frac{\sqrt{1-r^2}}{r^2} dr + C\\ =& -\frac{1}{r} - \int \cot^2(w) dw + C \quad \left( r \mapsto \sin(w)\right)\\ =& -\frac{1}{r} - \int (\csc^2(w)-1) dw + C \quad \left( \csc^2(\theta) - \cot^2(\theta) = 1 \right)\\ =& -\frac{1}{r} + \cot(w) + w + C\\ =& -\frac{1}{r} + \cot(\arcsin(r)) + \arcsin(r) + C\\ =& -\frac{1}{r} + \frac{\sqrt{1-r^2}}{r} + \arcsin(r) + C \quad \left( \arcsin(x) = \operatorname{arccot}\left(\frac{\sqrt{1-x^2}}{x}\right)\right)\\ \end{align*} Therefore \int_{0}^{t} \frac{1-\sqrt{1-r^2}}{r^2} dt = \left[-\frac{1}{r} + \frac{\sqrt{1-r^2}}{r} + \arcsin(r)\right]_{0}^{t} = -\frac{1}{t} - \frac{\sqrt{1-t^2}}{t} + \arcsin(t) Hence -\frac{1}{t} + \frac{\sqrt{1-t^2}}{t} + \arcsin(t) = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2^{2n}(2n-1)^2}t^{2n-1} \Longrightarrow \sqrt{1-t^2} + t\arcsin(t) -1 = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2^{2n}(2n-1)^2}t^{2n}

Sunday, January 9, 2022

Integral of the day XIX

Time to use mathematical induction

Integral involving a finite series


Today we show the proof of the following integral posted by @infseriesbot \int_{0}^\frac{\pi}{2} \sin(nx)\cos^n(x) dx = \frac{1}{2^{n+1}}\sum_{k=1}^{n} \frac{2^k}{k} The proof will rely on the Euler's formula and some properties of the binomial coefficient.

Proof

\begin{align*} \int_{0}^\frac{\pi}{2} \sin(nx)\cos^n(x) dx =& \Im\left( \int_{0}^{\frac{\pi}{2}} e^{inx}\cos^n(x) dx \right) \textrm{ (Euler's formula)} \\ =& \Im\left( \int_{0}^{\frac{\pi}{2}} e^{inx}\left(\frac{e^{ix}+e^{-ix}}{2}\right)^ndx \right)\\ =& \Im\left( \frac{1}{2^n}\int_{0}^{\frac{\pi}{2}} e^{inx}\sum_{j=0}^{n}\binom{n}{j} e^{ix(n-2j)}dx \right) \quad \textrm{(Binomial expansion)}\\ =& \Im\left( \frac{1}{2^n}\sum_{j=0}^{n} \binom{n}{j}\int_{0}^{\frac{\pi}{2}} e^{i2x(n-j)}dx \right)\\ =&\Im\left( \frac{1}{2^n}\sum_{j=0}^{n}\binom{n}{j} \int_{0}^{\frac{\pi}{2}} \left[\cos\left(2x(n-j)\right)+i\sin\left(2x(n-j)\right) \right]dx\right) \textrm{ (Euler's formula)}\\ =&\Im\left( \frac{1}{2^n}\sum_{j=0}^{n}\binom{n}{j} \left[\int_{0}^{\frac{\pi}{2}} \cos\left(2x(n-j)\right) dx +i \int_{0}^{\frac{\pi}{2}} \sin\left(2x(n-j)\right) dx \right]\right)\\ =&\Im\left( \frac{1}{2^n}\sum_{j=0}^{n}\binom{n}{j} \int_{0}^{\frac{\pi}{2}} \cos\left(2x(n-j)\right) dx +i \frac{1}{2^n}\sum_{j=0}^{n} \int_{0}^{\frac{\pi}{2}} \sin\left(2x(n-j)\right) dx \right)\\ =& \frac{1}{2^n}\sum_{j=0}^{n}\binom{n}{j} \int_{0}^{\frac{\pi}{2}} \sin\left(2x(n-j)\right) dx \\ =& \frac{1}{2^n}\sum_{j=0}^{n-1}\binom{n}{j} \int_{0}^{\frac{\pi}{2}} \sin\left(2x(n-j)\right) dx + \underbrace{\binom{n}{n} \int_{0}^{\frac{\pi}{2}} \sin\left(0\right) dx}_{=0} \\ =& \frac{1}{2^{n+1}}\sum_{j=0}^{n-1}\binom{n}{j}\frac{1}{n-j} \int_{0}^{\pi(n-j)} \sin(w) dw \quad \left( w \mapsto 2x(n-j) \right)\\ =& \frac{1}{2^{n+1}}\sum_{j=0}^{n-1}\binom{n}{j}\frac{1}{n-j} \int_{0}^{\pi(n-j)} \sin(w) dw \\ =& \frac{1}{2^{n+1}}\sum_{j=0}^{n-1}\binom{n}{j}\frac{1}{n-j} \left[-\cos(w)\right]_{0}^{\pi(n-j)}\\ =& \frac{1}{2^{n+1}}\sum_{j=0}^{n-1}\binom{n}{j}\frac{1-\cos\left(\pi(n-j)\right)}{n-j} \\ =& \frac{1}{2^{n+1}}\sum_{k=1}^{n}\binom{n}{n-k}\frac{1-\cos\left(\pi k \right)}{k} \\ =& \frac{1}{2^{n}}\sum_{k=1}^{n}\binom{n}{n-k}\frac{\sin^2\left(\frac{\pi k}{2} \right)}{k} \quad \left(\sin^2 \theta =\frac{1-\cos(2\theta)}{2}\right)\\ =& \frac{1}{2^{n}}\sum_{k=1}^{n}\binom{n}{k}\frac{\sin^2\left(\frac{\pi k}{2} \right)}{k} \;\;\quad \binom{n}{n-m} = \binom{n}{m} \\ \end{align*} Note that \left(\sin^2\left(\frac{\pi k}{2} \right)\right)_{k\in \mathbb{N}} = (1,0,1,0,1,0,...) Hence \begin{align*} I = \int_{0}^\frac{\pi}{2} \sin(nx)\cos^n(x) dx =& \frac{1}{2^{n}}\sum_{k=1}^{n}\binom{n}{k}\frac{\sin^2\left(\frac{\pi k}{2} \right)}{k}\\ =\frac{1}{2^{n}}\sum_{k=1}^{n}\binom{n}{2k-1}\frac{1}{2k-1}\\ \end{align*} Finally, we are going to prove that 2\sum_{k=1}^{n}\binom{n}{2k-1}\frac{1}{2k-1} = \sum_{k=1}^{n} \frac{2^k}{k} \quad \forall n\in \mathbb{N} using mathematical induction:

Base case n=1 2\binom{1}{2-1}\frac{1}{2-1} = 2 \frac{2^1}{1} = 2 Inductive step, suppose this is valid for n=m 2\sum_{k=1}^{m}\binom{m}{2k-1}\frac{1}{2k-1} = \sum_{k=1}^{m} \frac{2^k}{k} We need to prove this for \underline{n= m+1}

From the recursion formula \binom{v+1}{m} =\binom{v}{m} + \binom{v}{m-1} \tag{1} and the expression \sum_{j=0}^{J} \binom{n}{j} = 2^n \quad J\geq n \tag{2} we have \begin{align*} 2\sum_{k=1}^{m+1}\binom{m+1}{2k-1}\frac{1}{2k-1} = & 2\sum_{k=1}^{m}\binom{m+1}{2k-1}\frac{1}{2k-1} + \underbrace{2\binom{m+1}{2m+1}\frac{1}{2m+1}}_{=0}\\ =& 2\sum_{k=1}^{m}\left[\binom{m}{2k-1}+\binom{m}{2k-2}\right]\frac{1}{2k-1} \quad \textrm{ from (1)}\\ =& 2\sum_{k=1}^{m}\binom{m}{2k-1}\frac{1}{2k-1}+2\sum_{k=1}^{m}\binom{m}{2k-2}\frac{1}{2k-1}\\ =& \sum_{k=1}^{m} \frac{2^k}{k}+2\sum_{k=1}^{m}\binom{m}{2k-2}\frac{1}{2k-1} \quad \textrm{(inductive hypothesis)}\\ =& \sum_{k=1}^{m} \frac{2^k}{k}+2\sum_{j=0}^{m-1}\binom{m}{2j}\frac{1}{2j+1} \quad (j = k-1)\\ =& \sum_{k=1}^{m} \frac{2^k}{k}+2\sum_{j=0}^{m-1}\frac{m!}{(m-2j)!(2j)!(2j+1)} \\ =& \sum_{k=1}^{m} \frac{2^k}{k}+\frac{2}{m+1}\sum_{j=0}^{m-1}\frac{(m+1)!}{(m-2j)!(2j+1)!} \\ =& \sum_{k=1}^{m} \frac{2^k}{k}+\frac{2}{m+1}\sum_{j=0}^{m-1}\binom{m+1}{2j+1} \\ =& \sum_{k=1}^{m} \frac{2^k}{k}+\frac{2}{m+1}\sum_{j=0}^{m-1}\left[\binom{m}{2j+1}+ \binom{m}{2j}\right] \quad \textrm{ from (1)}\\ =& \sum_{k=1}^{m} \frac{2^k}{k}+\frac{2}{m+1}\sum_{j=0}^{2m-1}\binom{m}{j}\\ =& \sum_{k=1}^{m} \frac{2^k}{k}+\frac{2^{m+1}}{m+1}\quad \textrm{ from (2)}\\ =& \sum_{k=1}^{m+1} \frac{2^k}{k} \end{align*} Hence, we can conclude \boxed{\int_{0}^\frac{\pi}{2} \sin(nx)\cos^n(x) dx = \frac{1}{2^{n+1}}\sum_{k=1}^{n} \frac{2^k}{k}}

Series of the day

Series involving the digamma and the zeta functions The sum \displaystyle \sum\frac{1}{(n+1)^pn^q} ...