Loading [MathJax]/extensions/TeX/mathchoice.js

Thursday, December 30, 2021

Euler's work VIII

Euler sums

Nice Euler sum involving the Apéry's constant ζ(3) and the Catalan's constant β(2)


Today we show the proof of this nice Euler sum proposed by @Ali39342137 n=0(1)n1H2n2n+1(Hn2Hn12)=π2ln(2)8π2β(2)+2132ζ(3) The proof will rely on some properties of the digamma function and the use of Fourier series.

Proof:

Recall the following integral for the difference of digamma functions (proof in Appendix 1): 10xμ11+xdx=12[ψ(μ+12)ψ(μ2)] Let nN. If we put μ1=n 10xn1+xdx=12[ψ(n2+1)ψ(n2+12)] Hence 10xn1+xdx=12[ψ(n2+1)+γ(ψ(n12+1)+γ)]=12[Hn2Hn12] Hn2Hn12=210xn1+xdx Therefore (1)n1H2n2n+1(Hn2Hn12)=21011+x(1)n1H2n2n+1xndx Hence S=n=0(1)n1H2n2n+1(Hn2Hn12)=n=021011+x(1)n1H2n2n+1xndx=21011+x(n=0(1)n1H2n2n+1xn)dx (Fubini-Tonelli)=41011+w2(n=0(1)n1H2n2n+1w2n+1)dw(w2x) We proved previously (proof in Appendix 2): n=0(1)n1H2n2n+1w2n+1=12arctan(w)ln(1+w2) Hence S=n=0(1)n1H2n2n+1(Hn2Hn12)=210arctan(w)ln(1+w2)1+w2dw We just have to find the integral in the right hand side S=210arctan(w)ln(1+w2)1+w2dw=2π40θln(1+tan2(θ))dθ(θ=arctan(w))=2π40θln(cos2(θ)cos2(θ)+sin2(θ)cos2(θ))dθ=2π40θln(1cos2(θ))dθ=4π40θln(cos(θ))dθ=π20tln(cos(t2))dt(t2θ)=π20tln(22cos(t2))dt=ln(2)π20tdtπ20tln(2cos(t2))dt=π2ln(2)8π20tln(2cos(t2))dtI We can expand the integrand in I with the following Fourier series: k=1(1)k1cos(kx)k=ln(2cos(x2))π<x<π Therefore I=π20tln(2cos(t2))dt=π20tk=1(1)k1cos(kt)kdt=k=1(1)k1kπ20tcos(kt)dt (Fubini-Tonelli)=k=1(1)k1k3kπ20scos(s)ds(skt)IBP=k=1(1)k1k3[ssin(s)|kπ20kπ20sin(s)ds]=k=1(1)k1k3[(kπ2)sin(kπ2)+cos(kπ2)1]=π2k=1(1)k1sin(kπ2)k2+k=1(1)k1cos(kπ2)k3k=1(1)k1k3 Note that (sin(kπ2))k=(1,0,1,0,1,0,1,...) (cos(kπ2))k=(0,1,0,1,0,1,0,...) Therefore I=π2k=1(1)k1sin(kπ2)k2+k=1(1)k1cos(kπ2)k3k=1(1)k1k3=π2k=1(1)k1(2k1)2+k=1(1)k1(2k)3k=1(1)k1k3=π2k=1(1)k1(2k1)278k=1(1)kk3=π2β(2)78η(3) (eta and beta dirichlet functions) Finally, using the identity: η(v)=(121v)ζ(v) I=π2β(2)2132ζ(3) Therefore S=n=0(1)n1H2n2n+1(Hn2Hn12)=π2ln(2)8π2β(2)+2132ζ(3)

Appendix 1

We show the proof of this nice integral representation 10xμ11+xdx=12[ψ(μ+12)ψ(μ2)]

Proof

10xμ11+xdx=10j=0(1)jxjxμ1dx=j=0(1)j10xj+μ1dx=j=0(1)jj+μ=j=0[12j+μ12j+1+μ]=12j=0[1j+μ21j+1+μ2]=14j=01(j+μ2)(j+1+μ2) The difference between two digamma functions may be expressed as ψ(x)ψ(y)=(xy)j=01(j+x)(j+y) If we put x=μ2,y=μ+12 10xμ11+xdx=14j=01(j+μ2)(j+1+μ2)=12[ψ(μ+12)ψ(μ2)]

Appendix 2

n=0(1)n1H2n2n+1x2n+1=12arctan(x)ln(1+x2)

Proof

One of the special cases of the Gauss hypergometric is the following: 2F2(a,12+a;32;z2)=1(24a)z((1+z)12a(1z)12a) If we put a=t2,z=ix: 2F2(t2,12+t2;32;x)=12(1t)ix((1+ix)1t(1ix)1t) From the definition of 2F1: 2F1(t2,t+12;32,x)=n=0(t2)n(1+t2)n(32)n(1)nxnn!=n=04n(t2)n(1+t2)n4n(1)n(32)n(1)nxn=n=0(t)2n(2)2n(1)nxn Therefore n=0(t)2n(2)2n(1)nxn=12(1t)ix((1+ix)1t(1ix)1t) Differentiating with respect to t: ddt|t=1n=0(t)2n(2)2n(1)nxn=n=0(1)2n[ψ(2n+1)+γ](2)2n(1)n=n=0(1)nH2n2n+1x2n Hence n=0(1)nH2n2n+1x2n=ddt|t=1[12(1t)ix((1+ix)1t(1ix)1t)]=limt1[i((1+ix)1t(1ix)1t)2(1t)2x=0i((1ix)1tln(1ix)(1+ix)1tln(1+ix))2(1t)x]=limt1i((1ix)1tln(1ix)(1+ix)1tln(1+ix))2(1t)x=i(ln2(1+ix)ln2(1ix))4x (L'Hôpital's rule) =i(ln(1+ix)ln(1ix))(ln(1+ix)+ln(1ix))4x=i(ln(1+ix)ln(1ix))(ln(1+ix)+ln(1ix))4x=12x[i2ln(1ix1+ix)ln(1+x2)]=12xarctan(x)ln(1+x2) Therefore we can conclude n=0(1)nH2n2n+1x2n+1=12arctan(x)ln(1+x2)

Tuesday, December 28, 2021

Integral of the day XVIII

Discrete laplace transform

Integral involving a discrete Laplace transform


Today we evaluate the following integral posted by @integralsbot π20cos(αx)cosα(x)cos(2β)cos(2x)dx=π4eαβsinh(β)cosh1α(β)α>1,β>0 The trick to evaluate this integral is the use of a discrete Laplace transform.

Proof.

This is the discrete Laplace transform that we need (Proof in the appendix): 1+2k=1ektcoskx=sinhtcoshtcosxt>0 Therefore I=π20cos(αx)cosα(x)cos(2β)cos(2x)dx=12π0cos(αw2)cosα(w2)cos(2β)cos(w)dw(w2x)=14ππcos(αw2)cosα(w2)cos(2β)cos(w)dw (the integrand is even)=14ππsinh(2β)cos(2β)cos(w)cos(αw2)cosα(w2)sinh(2β)dw=14ππ(1+2k=1ek2βcos(kw))cos(αw2)cosα(w2)sinh(2β)dw from (1) =14sinh(2β)ππcos(αw2)cosα(w2)dwJ+12sinh(2β)k=1ek2βππcos(kw)cos(αw2)cosα(w2)dwK Lets start with J. Using the fact that (eix)=cos(x): J=ππcos(αw2)cosα(w2)dw=(ππeiαw2cosα(w2)dw) If we make the substitution eiw=z dw=dzzi we transform the integral in a contour integral round the unit complex circle: J=(ππeiαw2cosα(w2)dw)=(1i|z|=1zα2(z+1)α2αzα2zdz)=(12αi|z|=1(z+1)αzdz) The function f(z)=(z+1)αz has two singularities at z=0 and z=1. However, since α>1, z=1 is a removable singularity and its residue is zero. Therefore we can use the binomial theorem to find the residue at z=0: (1+z)^{\alpha} = \sum_{j=0}^{\infty} \binom{\alpha}{j} z^{j} \quad |z|\lt 1 f(z) = \frac{(z+1)^{\alpha} }{z} = \sum_{j=0}^{\infty} \binom{\alpha}{j} z^{j-1} The residue is the coefficient of z^{-1} which means that j=0. By the Residue theorem: \oint_{|z|=1} \frac{(z+1)^{\alpha} }{z} dz = 2\pi i \operatorname{Res}(f,0) = 2\pi i \binom{\alpha}{0} = 2\pi i Hence J = \Re\left(\frac{1}{2^{\alpha}i} \oint_{|z|=1} \frac{(z+1)^{\alpha} }{z} dz\right) = \Re\left( \frac{\pi}{2^{\alpha-1}} \right) = \frac{\pi}{2^{\alpha-1}} \tag{3} Now for K: \begin{align*} K = \int_{-\pi}^{\pi} \cos(kw) \cos \left(\frac{\alpha w}{2}\right) \cos^{\alpha} \left(\frac{w}{2}\right) dw = \Re\left( \int_{-\pi}^{\pi} \cos(kw) e^{\frac{i\alpha w}{2}} \cos^{\alpha} \left(\frac{w}{2}\right) dw\right) \end{align*} Making the same substitution as before: e^{iw} = z dw = \frac{dz}{zi} \begin{align*} K = \Re\left( \int_{-\pi}^{\pi} \cos(kw) e^{\frac{i\alpha w}{2}} \cos^{\alpha} \left(\frac{w}{2}\right) dw\right) = \Re\left( \frac{1}{2^{\alpha+1}i}\oint_{|z|=1} \frac{(z^{2k}+1)(z+1)^{\alpha}}{z^{k+1}} dz\right) \end{align*} The function g(z)= \frac{(z^{2k}+1)(z+1)^{\alpha}}{z^{k+1}} has two singularities at z=-1 and z=0 but again the singularity at z=-1 is a removable singularity and its residue is zero. To find the residue at z=0 we will use the binomial expansion of (z+1)^{\alpha}. g(z)= \frac{(z^{2k}+1)}{z^{k+1}}\sum_{j=0}^{\infty} \binom{\alpha}{j} z^j = \sum_{j=0}^{\infty} \binom{\alpha}{j} z^{j+k-1} + \sum_{j=0}^{\infty} \binom{\alpha}{j} z^{j-k-1} \quad |z|\lt 1 Therefore the residue is the coefficient of z^{-1}. Note that the residue in the first sum is zero while the second sum attains the residue at j=k \oint_{|z|=1} \frac{(z^{2k}+1)(z+1)^{\alpha}}{z^{k+1}} dz = 2\pi i \operatorname{Res}(g,0) = 2\pi i \binom{\alpha}{k} Therefore K = \Re\left( \frac{1}{4i}\oint_{|z|=1} \frac{(z^{2k}+1)(z+1)^{\alpha}}{z^{k+1}} dz\right) = \Re\left( \frac{\pi}{2^{\alpha}}\binom{\alpha}{k} \right) = \frac{\pi}{2^{\alpha}}\binom{\alpha}{k} \tag{4} Hence \begin{align*} I = \int_{0}^{\frac{\pi}{2}} \frac{\cos \alpha x \cos^{\alpha} x}{\cos 2\beta - \cos 2x} dx =& \frac{\pi}{2^{\alpha+1}\sinh (2\beta) } + \frac{\pi}{2^{\alpha+1}\sinh (2\beta)}\sum_{k=1}^{\infty}\binom{\alpha}{k} e^{-k 2\beta} \quad \textrm{ from (2),(3),(4)} \\ =& \frac{\pi}{2^{\alpha+1}\sinh (2\beta)}\sum_{k=0}^{\infty}\binom{\alpha}{k} e^{-k 2\beta} \quad \textrm{ (re-indexing) } \\ =& \frac{\pi}{2^{\alpha+1}\sinh (2\beta)}(1+e^{-2\beta})^{\alpha} \quad \textrm{ (binomial theorem) } \\ =& \frac{\pi}{2 e^{\alpha\beta}\sinh (2\beta)}\left(\frac{e^{\beta}+e^{-\beta}}{2}\right)^{\alpha} \\ =& \frac{\pi \cos^{\alpha}(\beta)}{2e^{\alpha\beta}\sinh (2\beta)} \\ =& \frac{\pi}{4 e^{\alpha\beta}\sinh(\beta)\cosh^{1-\alpha}(\beta)} \quad \left(\sinh(2\beta) = 2\sinh(\beta)\cosh(\beta)\right)\\ \end{align*} Therefore, we can conclude \boxed{ \int_{0}^{\frac{\pi}{2}} \frac{\cos (\alpha x) \cos^{\alpha} (x)}{\cos (2\beta) - \cos (2x)} dx = \frac{\pi}{4e^{\alpha\beta}\sinh(\beta) \cosh^{1-\alpha}(\beta)} \quad \alpha >-1, \beta>0 } Appendix.

Proposition. 1+2\sum_{k=1}^{\infty} e^{-kt}\cos kx = \frac{\sinh t}{\cosh t - \cos x} \quad { t>0 } Proof: \begin{align*} 1+2\sum_{k=1}^{\infty} e^{-kt}\cos kx =& 1+2\Re\left(\sum_{k=1}^{\infty}e^{-kt}e^{ikx} \right)\\ =& 1+2\Re\left(\sum_{k=1}^{\infty}e^{k(ix-t)} \right)\\ =& 1+2\Re\left(\frac{1}{e^{t-ix}-1} \right)\\ =& 1+2\Re\left(\frac{e^{-t}}{e^{-ix}-e^{-t}} \right)\\ =& 1+2e^{-t}\Re\left(\frac{1}{\cos x-i\sin x- e^{-t}}\right)\\ =& 1+2e^{-t}\Re\left(\frac{\cos x-e^{-t} - i\sin x}{(\cos x-e^{-t})^2 + \sin^2 x} \right)\\ =& 1+2e^{-t}\Re\left(\frac{\cos x-e^{-t} - i\sin x}{e^{-2t}-2e^{t}\cos x + 1} \right)\\ =& 1+\Re\left(\frac{\cos x -e^{-t}+ i\sin x}{\cosh t-\cos x} \right)\\ =& \frac{\cosh t- \cos x}{\cosh t- \cos x}+\frac{\cos x-e^{-t}}{(\cosh t- \cos x )} \\ =& \frac{\sinh t}{\cosh t - \cos x} \end{align*}

Monday, December 27, 2021

Integral of the day XVII

Another integral posted on Twitter

Integral involving the complete Gamma function \Gamma


Today we evaluate this integral proposed by @BenriBot_ccbs: \int_{0}^{1} \frac{\ln\left(\frac{1-x}{1+x}\right)}{\sqrt{x(1+x^2})}dx = -\sqrt{\pi}\Gamma^2\left(\frac{5}{4}\right) Update: I added another solution which involves the complete Beta function and seems to be far easier.

Proof

Solution 1 (New). Using the complete beta function B(x,y): \begin{align*} I = \int_{0}^{1} \frac{\ln\left(\frac{1-x}{1+x}\right)}{\sqrt{x(1+x^2})}dx = & \sqrt{2}\int_{0}^{1} \frac{\ln(w)}{\sqrt{1-w^4}}dw \quad \left(w \mapsto \frac{1-x}{1+x} \right) \\ =& \sqrt{2}\int_{0}^{1} \frac{\left(\frac{d}{dt}\Big|_{t=0+} w^t \right)}{\sqrt{1-w^4}} dw \\ =&\frac{d}{dt}\Big|_{t=0+} \sqrt{2}\int_{0}^{1} \frac{ w^t}{\sqrt{1-w^4}} dw\\ =&\frac{d}{dt}\Big|_{t=0+} \sqrt{2}\int_{0}^{1} w^t(1-w^4)^{-\frac{1}{2}} dw\\ =& \frac{d}{dt}\Big|_{t=0+} \frac{\sqrt{2}}{4} \int_{0}^{1} s^{\frac{t-3}{4}}(1-s)^{-\frac{1}{2}} ds\\ =& \frac{d}{dt}\Big|_{t=0+} \frac{\sqrt{2}}{4} B\left(\frac{t+1}{4}, \frac{1}{2} \right)\\ \end{align*} Recall the derivative of the complete beta function: \frac{\partial}{\partial x} \mathrm{B}(x, y) = \mathrm{B}(x, y) \big(\psi(x) - \psi(x + y)\big) Hence \begin{align*} I = \frac{d}{dt}\Big|_{t=0+} \frac{\sqrt{2}}{4} B\left(\frac{t+1}{4}, \frac{1}{2} \right) = & \lim_{t \to 0+} \frac{\sqrt{2}}{16} B\left(\frac{t+1}{4}, \frac{1}{2} \right)\left[ \psi\left(\frac{t+1}{4}\right)-\psi\left(\frac{t+3}{4} \right)\right]\\ =& \frac{\sqrt{2}}{16} B\left(\frac{1}{4}, \frac{1}{2} \right)\left[ \psi\left(\frac{1}{4}\right)-\psi\left(\frac{3}{4} \right)\right]\\ =& \frac{\sqrt{2}}{16} \frac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{4}\right)}\left[ \psi\left(\frac{1}{4}\right)-\psi\left(\frac{3}{4} \right)\right] \end{align*} From the reflection formula \psi(1-x) - \psi(x) = \pi\cot(\pi x) we have I= \frac{\sqrt{2}}{16} \frac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{4}\right)}\left[ \psi\left(\frac{1}{4}\right)-\psi\left(\frac{3}{4} \right)\right] = -\frac{\sqrt{2}\pi^{\frac{3}{4}}}{16} \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)} which is bascially the same as -\sqrt{\pi}\Gamma^2\left(\frac{5}{4}\right).

Solution 2. Using {}_{3}F_{2}: \begin{align*} I = \int_{0}^{1} \frac{\ln\left(\frac{1-x}{1+x}\right)}{\sqrt{x(1+x^2})}dx = & \sqrt{2}\int_{0}^{1} \frac{\ln(w)}{\sqrt{1-w^4}}dw \quad \left(w \mapsto \frac{1-x}{1+x} \right) \\ =& \sqrt{2}\int_{0}^{1} \frac{\left(\frac{d}{dt}\Big|_{t=0+} w^t \right)}{\sqrt{1-w^4}} dw \\ =&\frac{d}{dt}\Big|_{t=0+} \sqrt{2}\int_{0}^{1} \frac{ w^t}{\sqrt{1-w^4}} dw\\ =&\frac{d}{dt}\Big|_{t=0+} \sqrt{2}\int_{0}^{1} \sum_{n=0}^{\infty} \binom{-\frac{1}{2}}{n} (-1)^n w^{4n} w^{t} dw\\ =& \frac{d}{dt}\Big|_{t=0+} \sqrt{2}\sum_{n=0}^{\infty} \binom{-\frac{1}{2}}{n} (-1)^n \int_{0}^{1} w^{4n+t} dw\\ =& \frac{d}{dt}\Big|_{t=0+} \sqrt{2}\sum_{n=0}^{\infty} \binom{-\frac{1}{2}}{n} \frac{(-1)^n}{4n+t+1} \\ =& \sqrt{2}\sum_{n=0}^{\infty} \binom{-\frac{1}{2}}{n} \left[\frac{d}{dt}\Big|_{t=0+} \frac{(-1)^n}{4n+t+1} \right]\\ =& -\sqrt{2}\sum_{n=0}^{\infty} \binom{-\frac{1}{2}}{n} \frac{(-1)^n}{(4n+1)^2}\\ \end{align*} Using the formula that relate the binomial coefficient to the Pochhammer polynomial (rising factorial): \binom{v}{m} = \frac{(v-m+1)_{m}}{m!} and the reflection formula (-x)_{n} = (-1)^n(x-n+1)_{n} Therefore \begin{align*} I = -\sqrt{2}\sum_{n=0}^{\infty} \binom{-\frac{1}{2}}{n} \frac{(-1)^n}{(4n+1)^2} =& -\sqrt{2}\sum_{n=0}^{\infty} \frac{\left(-\frac{1}{2}-n+1\right)_{n}}{n!} \frac{(-1)^n}{(4n+1)^2} \quad \textrm{ from (1)}\\ =& -\sqrt{2}\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}}{n!} \frac{1}{(4n+1)^2} \quad \textrm{ from (2)}\\ \end{align*} Recall the recursion formula for the argument of the rising factorial: n+x = \frac{x(x+1)_{n}}{(x)_{n}} \tag{3} Hence \begin{align*} I = -\sqrt{2}\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}}{n!} \frac{1}{(4n+1)^2} = & -\frac{\sqrt{2}}{16}\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}}{n!} \frac{1}{(n+\frac{1}{4})^2}\\ =& -\sqrt{2}\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{1}{4}\right)_{n}}{\left(\frac{5}{4}\right)_{n}\left(\frac{5}{4}\right)_{n}}\frac{1}{n!} \quad \textrm{ from (3)} \\ =& -\sqrt{2} {}_{3}F_{2} \left[{\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \atop \frac{5}{4}, \frac{5}{4} }; 1 \right] \end{align*} This is the Generalized hypergeometric function {}_{3}F_{2}(a,b,c;d,e;z). This function satisfies the Dixon's well-poised sum: {{}_{3}F_{2}}\left[{a,b,c\atop a-b+1,a-c+1};1\right]=\frac{\Gamma\left(\frac{1 }{2}a+1\right)\Gamma\left(a-b+1\right)\Gamma\left(a-c+1\right)\Gamma\left( \frac{1}{2}a-b-c+1\right)}{\Gamma\left(a+1\right)\Gamma\left(\frac{1}{2}a-b+1 \right)\Gamma\left(\frac{1}{2}a-c+1\right)\Gamma\left(a-b-c+1\right)} \quad \Re(a-2b-2c)>-2 Putting \displaystyle a= \frac{1}{2}, b= \frac{1}{4}, c=\frac{1}{4}: \begin{align*} I = -\sqrt{2}{}_{3}F_{2} \left[{\frac{1}{2}, \frac{1}{4}, \frac{1}{4} \atop \frac{5}{4}, \frac{5}{4} }; 1 \right]=&-\sqrt{2} \frac{\Gamma\left(\frac{1 }{2}a+1\right)\Gamma\left(a-b+1\right)\Gamma\left(a-c+1\right)\Gamma\left( \frac{1}{2}a-b-c+1\right)}{\Gamma\left(a+1\right)\Gamma\left(\frac{1}{2}a-b+1 \right)\Gamma\left(\frac{1}{2}a-c+1\right)\Gamma\left(a-b-c+1\right)} \\ =& -\sqrt{2} \frac{\Gamma\left(\frac{5}{4}\right)\Gamma\left(\frac{5}{4}\right)\Gamma\left(\frac{5}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{3}{2}\right)\Gamma(1)\Gamma(1)\Gamma(1)}\\ =& -\sqrt{2} \frac{\Gamma^3\left(\frac{5}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{3}{2}\right) }\\ = &-\sqrt{\pi}\Gamma^2\left(\frac{5}{4}\right) \end{align*} Therefore, we can conclude \boxed{ \int_{0}^{1} \frac{\ln\left(\frac{1-x}{1+x}\right)}{\sqrt{x(1+x^2})}dx = -\sqrt{\pi}\Gamma^2\left(\frac{5}{4}\right)} which is basically the same result as before

Friday, December 17, 2021

Infinite products

Nince infinite product

Product related to a series expansion of \cot(\pi x)


Today we show the proof of this nice result proposed by @replicamethod \prod_{k=1}^{\infty} \frac{(3k)^2}{(3k-1)(3k+1)} = \frac{2\pi}{3\sqrt{3}} The proof will rely on the expansion in zeta numbers of the \cot(\pi x) function.

Proof

Consider the infinite product A = \prod_{k=1}^{\infty} \frac{(3k)^2}{(3k-1)(3k+1)} = \prod_{k=1}^{\infty} \frac{k^2}{k^2-\frac{1}{9}} = \prod_{k=1}^{\infty} \frac{1}{1-\frac{1}{9k^2}} = \frac{1}{\prod_{k=1}^{\infty}1-\frac{1}{9k^2}} Taking logarithm in both sides: \ln(A) = -\sum_{k=1}^{\infty} \ln\left(1-\frac{1}{9k^2}\right) = \sum_{k=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{n9^nk^{2n}} = \underbrace{\sum_{n=1}^{\infty}\frac{1}{n9^n}\sum_{k=1}^{\infty}}_{\textrm{Rearrangement}}\frac{1}{k^{2n}} = \sum_{n=1}^{\infty}\frac{\zeta(2n)}{n9^n} Now using the following expansion (proof in the Appendix): \sum_{n=1}^{\infty} \frac{\zeta(2n)}{n} x^{2n} = \ln(\pi x) + \ln(\csc \pi x) If we put \displaystyle x = \frac{1}{3} \sum_{n=1}^{\infty} \frac{\zeta(2n)}{n9^n} = \ln\left(\frac{\pi}{3} \right) + \ln\left(\frac{2}{\sqrt{3}}\right) Hence \ln(A) = \ln\left(\frac{\pi}{3} \right) + \ln\left(\frac{2}{\sqrt{3}}\right) = \ln\left(\frac{2\pi}{3\sqrt{3}}\right) \Longrightarrow A = \frac{2\pi}{3\sqrt{3}} Hence \boxed{ \prod_{k=1}^{\infty} \frac{(3k)^2}{(3k-1)(3k+1)} = \frac{2\pi}{3\sqrt{3}}}

Appendix

Proposition: \sum_{k=1}^{\infty}\zeta(2k)\frac{x^{2k}}{k}= \ln\left(\frac{\pi x}{\sin(\pi x)}\right) \quad 0\lt x\lt 1 Proof:

Recall the expansion in partial fractions of \cot(x\pi) \cot(x \pi) = \frac{2}{\pi}\left[\frac{1}{2 x}+ \sum_{n=1}^{\infty} \frac{x}{(x^2-n^2)}\right] \quad x\neq \pm 1, \pm 2, \pm 3,.. From these we can obtain the exapnsion in zeta numbers. Suppose that |x|\lt1, using the first equation we have \begin{align*} \cot(x \pi) =& \frac{1}{\pi x}- \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{x}{(n^2-x^2)} \\ = &\frac{1}{\pi x}- \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{x}{n^2\left(1-\left(\frac{x}{n}\right)^2\right)} \\ = &\frac{1}{\pi x}- \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{x}{n^2} \sum_{j=0}^{\infty} \left(\frac{x}{n}\right)^{2j}\\ =&\frac{1}{\pi x}- \frac{2}{\pi}\underbrace{\sum_{j=0}^{\infty}\sum_{n=1}^{\infty} \frac{1}{n^{2j+2}} x^{2j+1}}_{\textrm{Rearrangement}} \\ =&\frac{1}{\pi x}- \frac{2}{\pi}\sum_{j=0}^{\infty}\zeta(2j+2) x^{2j+1} \\ =&\frac{1}{\pi x}- \frac{2}{\pi}\sum_{k=1}^{\infty}\zeta(2k) x^{2k-1} \quad (j = k-1)\\ \end{align*} Therefore \boxed{ \cot(\pi x) =\frac{1}{\pi x}- \frac{2}{\pi}\sum_{k=1}^{\infty}\zeta(2k) x^{2k-1} \quad |x|\lt1 } Integrating the expansion of \pi \cot(\pi x): \int \pi \cot(\pi x) dx =\int \frac{1}{ x}dx- 2\sum_{k=1}^{\infty}\zeta(2k) \int x^{2k-1}dx + C Given that \int \pi \cot(\pi x) dx = \ln(\sin(\pi x))+ C Hence \ln(\sin(\pi x)) = \ln(x) -\sum_{k=1}^{\infty}\zeta(2k)\frac{x^{2k}}{k} + C \ln\left(\frac{\sin(\pi x)}{x}\right) = -\sum_{k=1}^{\infty}\zeta(2k)\frac{x^{2k}}{k} + C Taking the limit as x \to 0: \ln\left( \lim_{x \to 0 } \frac{\sin(\pi x)}{x}\right) = \underbrace{-\sum_{k=1}^{\infty}\zeta(2k)\frac{x^{2k}}{k} }_{=0}+ C Given that \displaystyle \lim_{x \to 0} \frac{\sin(\pi x) }{x} =\pi \Longrightarrow C = \ln(\pi) \therefore \ln(\sin(\pi x)) = \ln(x) - \sum_{k=1}^{\infty}\zeta(2k)\frac{x^{2k}}{k} + \ln(\pi)\Longrightarrow \ln\left(\frac{\pi x}{\sin(\pi x)}\right) = \sum_{k=1}^{\infty}\zeta(2k)\frac{x^{2k}}{k} \boxed{\sum_{k=1}^{\infty}\zeta(2k)\frac{x^{2k}}{k}= \ln\left(\frac{\pi x}{\sin(\pi x)}\right) }

Tuesday, December 14, 2021

Integral of the day XV

Weird integrals of infseriesbot

Monstrous integrals posted by @infseriesbot


Today we show the proof of this triplet of very weird integrals posted by @infseriesbot here, here and here:

Let |z|\lt1 , then \int_{0}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx = \pi \int_{0}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx = \pi \int_{0}^{\frac{\pi}{2}} \cos\left(bx-a\arctan\left(\frac{z\sin 2x}{1+z\cos 2x}\right)\right)(1+2z\cos2x +z^2)^{-\frac{a}{2}}\cos^{c-1}x dx = \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{1-b+c}{2}\right)\Gamma\left(\tfrac{1+b+c}{2}\right)}{{}_{2}F_{1}}\left[{a,\tfrac{1+b-c}{2}\atop \tfrac{1+b+c}{2}};z\right] These results are consequence of the residue theorem and some properties of the hypergeometric functions. We previously solved similar integrals here and here using similar techniques.

Proof:

1. First integral

Let I = \int_{0}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx First, note that the function f(x) = \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} is an even function. Then, I = \frac{1}{2}\int_{-\pi}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx Using the fact that \Re (e^{i\varphi}) = \cos(\varphi): I = \Re\left( \frac{1}{2}\int_{-\pi}^{\pi} e^{\left(ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)}(1+2z\cos x+z^2)^{-\frac{a}{2}} dx\right) Making the following substitution: e^{ix} = w \cos(x) = \frac{w+w^{-1}}{2} \sin(x) = \frac{w-w^{-1}}{2i} dx = \frac{dw}{wi} Using the logarithmic definition of \arctan and after a lengthy but easy calculation we can obtain: \begin{align*}\arctan\left(\frac{z\sin x}{1+z\cos x}\right) =& \arctan\left(\frac{i(z-w^2z)}{w^2z+2w+z}\right)\\ =& -\frac{i}{2}\ln\left(\frac{w^2z+w}{w+z}\right) \tag{1} \end{align*} e^{\left(ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)} = e^{\frac{a}{2}\ln\left(\frac{w^2z+w}{w+z}\right)} = \left(\frac{w^2z+w}{w+z}\right)^{\frac{a}{2}} Also note that (1+2z\cos x + z^2) = \frac{(w+z)(wz+1)}{w} \tag{2} Then, our integral became a contour integral round the unit complex circle: I = \Re \left(\frac{1}{2}\oint_{|w|=1} \left(\frac{w^2z+w}{w+z}\right)^{\frac{a}{2}}\frac{w^{\frac{a}{2}}}{{(w+z)^{\frac{a}{2}}}(wz+1)^{\frac{a}{2}}wi} dw\right) = \Re \left(\frac{1}{2i}\oint_{|w|=1} \frac{w^{a-1}}{(w+z)^a} dw\right) If |w|=1>|z|, we can expand the denominator with the binomial theorem: \Re \left(\frac{1}{2i}\oint_{|w|=1} \frac{w^{a-1}}{(w+z)^a} dw \right)= \Re\left( \frac{1}{2i}\oint_{|w|=1} \sum_{j=0}^{\infty} \binom{-a}{j} w^{-j-1}z^{j} \right) dw The function: g(w) = \sum_{j=0}^{\infty}\binom{-a}{j} w^{-j-1}z^{j} Has a pole at w=0, then the residue is the coefficient of w^{-1}: -j-1 = -1 \Longrightarrow j=0 \operatorname{Res}\left(g(w),0\right) = 1 By the residue theorem: \Re\left( \frac{1}{2i}\oint_{|w|=1} \sum_{j=0}^{\infty} w^{-j-1}z^{j} dw\right) = \Re \left(\pi \operatorname{Res}\left(g(w),0\right)\right) = \Re (\pi) = \pi Therefore \boxed{ \int_{0}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx = \pi}

2. Second integral:

J = \int_{0}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx The integrand is also even, then J = \frac{1}{2}\int_{-\pi}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx and using the fact that \Re (e^{i\varphi}) = \cos(\varphi) J = \Re\left(\frac{1}{2}\int_{-\pi}^{\pi} e^{\left(ibx -ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)}(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx\right) We can expand \displaystyle \left(2\cos \frac{x}{2}\right)^{2b} with the binomial theorem \left(2\cos \frac{x}{2}\right)^{2b} = (e^{\frac{ix}{2}}+ e^{\frac{-ix}{2}})^{2b} = \sum_{j=0}^{\infty} \binom{2b}{j} e^{ix(b-j)} Hence J = \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2}\int_{-\pi}^{\pi} e^{\left(-ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)}(1+2z\cos x+z^2)^{-\frac{a}{2}}e^{ix(2b-j)}dx\right) If we make the substitution: e^{ix} = w dx = \frac{dw}{wi} and using (1) and (2). We have: e^{\left(-ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)} = \left(\frac{w+z}{w^2z+w}\right)^{\frac{a}{2}} and (1+2z\cos x + z^2) = \frac{(w+z)(wz+1)}{w} Hence, \begin{align*} J =& \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2i}\oint_{|w|=1} \left(\frac{w+z}{w^2z+w}\right)^{\frac{a}{2}}\frac{w^{\frac{a}{2}}}{(w+z)^{\frac{a}{2}}(wz+1)^{\frac{a}{2}}w} w^{(2b-j)}dw\right)\\ =& \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2i}\oint_{|w|=1} \frac{w^{2b-j-1}}{(wz+1)^a}dw\right)\\ \end{align*} If |z|\lt1 \frac{1}{(wz+1)^a} = \sum_{k=0}^{\infty} \binom{-a}{k}w^kz^k Hence, \begin{align*}J=& \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2i}\oint_{|w|=1} \sum_{k=0}^{\infty} \binom{-a}{k}w^{2b-j+k-1}z^k dw\right)\\ =& \Re\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \binom{2b}{j} \binom{-a}{k}\frac{z^k }{2i}\oint_{|w|=1} w^{2b-j+k-1}dw\right) \end{align*} By the residue theorem \begin{align*} J =& \Re\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \binom{2b}{j} \binom{-a}{k}\frac{z^k }{2i}\oint_{|w|=1} w^{2b-j+k-1}dw\right) \\ =&\Re\left(\pi \sum_{k=0}^{\infty} \binom{2b}{2b+k} \binom{-a}{k}z^k\right) \end{align*} Note that \binom{2b}{2b+k} = 0 \Longleftrightarrow k>0 \wedge b>0 Therefore J = \Re\left(\pi \sum_{k=0}^{\infty} \binom{2b}{2b+k} \binom{-a}{k}z^k\right) = \pi \binom{-a}{0}\binom{2b}{2b} = \pi Hence, we can conclude \boxed{\int_{0}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx = \pi }

3. Third integral

Finally, we evaluate the last monstrous integral of this triplet using the results obtained in the previous integrals. Additionally, we need to make the assumption that \displaystyle \tfrac{c-1+b}{2} \in \mathbb{N} K = \int_{0}^{\frac{\pi}{2}} \cos\left(bx-a\arctan\left(\frac{z\sin 2x}{1+z\cos 2x}\right)\right)(1+2z\cos2x +z^2)^{-\frac{a}{2}}\cos^{c-1}x dx Do the substitution \displaystyle t = 2x. K = \frac{1}{2} \int_{0}^{\pi} \cos\left(\frac{bt}{2}-a\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)(1+2z\cos t +z^2)^{-\frac{a}{2}}\cos^{c-1}\left(\frac{t}{2}\right) dt Again, the integrand is an even function of t: K = \frac{1}{4} \int_{-\pi}^{\pi} \cos\left(\frac{bt}{2}-a\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)(1+2z\cos t +z^2)^{-\frac{a}{2}}\cos^{c-1}\left(\frac{t}{2}\right) dt Using the fact that \displaystyle \Re(e^{i\varphi}) = \cos(\varphi) K = \Re \left(\frac{1}{4} \int_{-\pi}^{\pi} e^{\left(i\frac{bt}{2}-ia\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)}(1+2z\cos t +z^2)^{-\frac{a}{2}}\cos^{c-1}\left(\frac{t}{2}\right) dt\right) Expanding \displaystyle \cos^{c-1}\left(\frac{t}{2}\right) with the binomial theorem: K = \Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}} \int_{-\pi}^{\pi} e^{\left(-ia\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)}(1+2z\cos t +z^2)^{-\frac{a}{2}}e^{it\left(\frac{b+c-1}{2}-j\right)} dt\right) Again, making the substitution e^{it} = w dt = \frac{dw}{wi} and using (1) and (2) we have \begin{align*} K = &\Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}i} \oint_{|w|=1}\left(\frac{w+z}{w^2z+w}\right)^{\frac{a}{2}}\frac{w^{-\frac{a}{2}}}{(w+z)^{\frac{a}{2}}(wz+1)^{\frac{a}{2}}w}w^{\left(\frac{b+c-1}{2}-j\right)} dt\right)\\ =& \Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}i} \oint_{|w|=1} \frac{w^{\left(\frac{b+c-1}{2}-j-1\right)}}{(wz+1)^a} dw\right) \end{align*} Assuming that |z|\lt1 and expanding \displaystyle \frac{1}{(wz+1)^a} with the binomial theorem: \begin{align*} K=& \Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}i} \oint_{|w|=1} \sum_{k=0}^{\infty} \binom{-a}{k} w^{\left(\frac{b+c-1}{2}-j+k-1\right)}z^k dw\right)\\ =&\Re \left(\sum_{j=0}^{\infty}\sum_{k=0}^{\infty} \binom{c-1}{j} \binom{-a}{k} \frac{z^k}{2^{c+1}i} \oint_{|w|=1} w^{\left(\frac{b+c-1}{2}-j+k-1\right)} dw\right) \end{align*} Applying the residue theorem: K = \Re \left(\sum_{j=0}^{\infty}\sum_{k=0}^{\infty} \binom{c-1}{j} \binom{-a}{k} \frac{z^k}{2^{c}}\pi \operatorname{Res}\left(w^{\left(\frac{b+c-1}{2}-j+k-1\right)},0\right)\right) The residue is the coefficient of w^{-1} Then w^{-1} = w^{\left(\frac{b+c-1}{2}-j+k-1\right)} \Longrightarrow j = k+\frac{b+c-1}{2} Since all the parameters are real or natural numbers we can dropout the \Re. Therefore, K = \frac{\pi}{2^c}\sum_{j=0}^{\infty} \binom{c-1}{ k+\frac{b+c-1}{2}} \binom{-a}{k} z^{k}

Who is this mysterious function? Let's see

Recall the formula that relate the binomial coefficient to the Pochhammer polynomial or rising factorial: \binom{v}{m} = \frac{(v-m+1)_{m}}{m!} Hence \begin{align*} K =& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \binom{c-1}{ k+\frac{b+c-1}{2}} \binom{-a}{k} z^{k} \\ &= \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{c-1-b}{2}-k+1\right)_{k+\tfrac{b+c-1}{2}}(-a-k+1)_{k}}{\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k} \end{align*} Now, using the rule for rising factorial (x)_{n+m} = (x)_{n}(x+n)_{m} we have \left(\tfrac{c-1-b}{2}-k+1\right)_{k+\tfrac{b+c-1}{2}} = \left(\tfrac{c-1-b}{2}-k+1\right)_{k}\left(\tfrac{c-1-b}{2}+1\right)_{\tfrac{b+c+1}{2}} \tag{3} Now, using the reflection formula (-x)_{n} = (-1)^n(x-n+1)_{n} \tag{4} and the fact that the rising factorial can be expressed as the quotient of two gamma functions: (x)_{n} = \frac{\Gamma(n+x)}{\Gamma(x)} \tag{5} we have \begin{align*} K= &\frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{c-1-b}{2}-k+1\right)_{k+\tfrac{b+c-1}{2}}(-a-k+1)_{k}}{\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k}\\ =& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{ \left(\tfrac{c-1-b}{2}-k+1\right)_{k}\left(\tfrac{c-1-b}{2}+1\right)_{\tfrac{b+c+1}{2}}(-a-k+1)_{k}}{\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k} \quad \textrm{ from } (3)\\ =& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{(-1)^k\left(\tfrac{b+1-c}{2}\right)_{k}\Gamma(c)(-a-k+1)_{k}}{\Gamma\left(\tfrac{c+1-b}{2}\right)\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k} \quad \textrm{ from } (4),(5)\\ =& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{b+1-c}{2}\right)_{k}\Gamma(c)(a)_{k}}{\Gamma\left(\tfrac{c+1-b}{2}\right)\Gamma\left(k+\tfrac{b+c+1}{2}\right)k!} z^{k}\\ =& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{b+1-c}{2}\right)_{k}\Gamma(c)(a)_{k}}{\Gamma\left(\tfrac{c+1-b}{2}\right)\Gamma\left(\tfrac{b+c+1}{2}\right)\left(\tfrac{b+c+1}{2}\right)_{k}k!} z^{k}\\ =& \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{c+1-b}{2}\right)\Gamma\left(\tfrac{b+c+1}{2}\right)}\sum_{j=0}^{\infty} \frac{\left(\tfrac{b+1-c}{2}\right)_{k}(a)_{k}}{\left(\tfrac{b+c+1}{2}\right)_{k}} \frac{z^{k}}{k!}\\ =& \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{1-b+c}{2}\right)\Gamma\left(\tfrac{1+b+c}{2}\right)}{{}_{2}F_{1}}\left[{a,\tfrac{1+b-c}{2}\atop \tfrac{1+b+c}{2}};z\right]\\ \end{align*} Therefore \boxed{\int_{0}^{\frac{\pi}{2}} \cos\left(bx-a\arctan\left(\frac{z\sin 2x}{1+z\cos 2x}\right)\right)(1+2z\cos2x +z^2)^{-\frac{a}{2}}\cos^{c-1}x dx = \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{1-b+c}{2}\right)\Gamma\left(\tfrac{1+b+c}{2}\right)}{{}_{2}F_{1}}\left[{a,\tfrac{1+b-c}{2}\atop \tfrac{1+b+c}{2}};z\right]}

Sunday, December 12, 2021

Generalized hypergeometric functions VII

Nice series involving Harmonic numbers

Nice series involving the harmonic number H_{2n}


Totday we show the proof of this nice series posted by @BenriBot_ccbs \sum_{n=1}^{\infty} \frac{(-1)^nH_{2n}}{2n+1} = -\frac{\pi\ln(2)}{8} The proof relies on some properties of the rising factorial and the Gauss hypergometric function {}_{2}F_{1}.

Proof

Consider the following series: S= \sum_{n=0}^{\infty} \frac{(t)_{2n}}{(2)_{2n}} x^n where (x)_{n} = x(1+x)\cdots (x+n-1) is the rising factorial or Pochhammer polynomial

The rising factorial satisfies the duplication formula: (x)_{2n} = 4^n\left(\frac{1}{x}\right)_{n}\left(\frac{1+x}{2}\right)_{n} Hence \begin{align*} S= \sum_{n=0}^{\infty} \frac{(t)_{2n}}{(2)_{2n}} x^n =& \sum_{n=0}^{\infty} \frac{4^n\left(\frac{t}{2}\right)_{n}\left(\frac{1+t}{2}\right)_{n}}{4^n(1)_{n}\left(\frac{3}{2}\right)_{n}} x^n \\ =& \sum_{n=0}^{\infty} \frac{\left(\frac{t}{2}\right)_{n}\left(\frac{1+t}{2}\right)_{n}}{\left(\frac{3}{2}\right)_{n}} \frac{x^n}{n!} \quad \;\; (1)_{n} = n! \\ =& {}_{2}F_{1} \left(\frac{t}{2},\frac{t+1}{2};\frac{3}{2}, x\right) \end{align*} where {}_{2}F_{1} is the Gauss hypergeometric function. {}_{2}F_{1} satisfies: {}_{2}F_{2} \left(a,\frac{1}{2}+a;\frac{3}{2};z^{2}\right)=\frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right) If we put a = \frac{t}{2} and z^2= i^2 = -1 \sum_{n=0}^{\infty} \frac{(t)_{2n}}{(2)_{2n}} (-1)^n = {}_{2}F_{1} \left(\frac{t}{2},\frac{t+1}{2};\frac{3}{2};-1\right) = \frac{(1+i)^{1-t}-(1-i)^{1-t}}{(2-2t)i} \tag{1} The derivative of the rising factorial is: \frac{d}{dx} (x)_{n} = (x)_{n} \left[\psi(n+x)-\psi(x)\right] Hence, differentiating (1) \frac{d}{dt} \sum_{n=0}^{\infty} \frac{(t)_{2n}}{(2)_{2n}} (-1)^n = \frac{d}{dt} \left[ \frac{(1+i)^{1-t}-(1-i)^{1-t}}{(2-2t)i}\right] \begin{align*} \Longrightarrow \sum_{n=0}^{\infty} \frac{(t)_{2n}\left[\psi(2n+t)-\psi(t)\right]}{(2)_{2n}} (-1)^n =& \frac{d}{dt} \left[ \frac{(1+i)^{1-t}-(1-i)^{1-t}}{(2-2t)i}\right]\\ =& \frac{2i\left((1-i)^{1-t}-(1+i)^{1-t}\right)}{(2-2t)^2} - \frac{i\left((1-i)^{1-t}\ln(1-i)-(1+i)^{1-t}\ln(1+i)\right)}{2-2t} \end{align*} Taking the limit as t \to 1 \begin{align*} \sum_{n=0}^{\infty} \frac{(1)_{2n}\left[\psi(2n+1)+\gamma\right]}{(2)_{2n}} (-1)^n = &\lim_{t \to 1} \left[\underbrace{\frac{2i\left((1-i)^{1-t}-(1+i)^{1-t}\right)}{(2-2t)^2}}_{=0} - \underbrace{\frac{i\left((1-i)^{1-t}\ln(1-i)-(1+i)^{1-t}\ln(1+i)\right)}{2-2t}}_{\textrm{L'Hôpital's rule }}\right] \\ =& -\frac{\pi\ln(2)}{8} \end{align*} Using the recursion formula (n+x)(x)_{n} = x(x+1)_{n} Hence (2n+1) = \frac{(2)_{2n}}{(1)_{2n}} Therefore \sum_{n=0}^{\infty} \frac{\left[\psi(2n+1)+\gamma\right]}{2n+1} (-1)^n = -\frac{\pi\ln(2)}{8} Finally, using the relation of the Harmonic number to the digamma function: H_x = \psi(x+1)+\gamma and \displaystyle H_{0} = 0

We can conclude \boxed{ \sum_{n=1}^{\infty} \frac{(-1)^nH_{2n}}{2n+1} = -\frac{\pi\ln(2)}{8}}

Wednesday, December 8, 2021

Integral of the day XIV

Useful integral

Integral involving the trigamma function \psi^{(1)}(x)


Today we show the proof of this result proposed by @Ali39342137 \int_{0}^{1} \frac{\ln(x)}{x^n+x^{n-1}+\cdots +1} dx = \frac{1}{(n+1)^2}\left[\psi^{(1)}\left(\frac{2}{n+1}\right)+ \psi^{(1)}\left(\frac{1}{n+1}\right)\right]

Proof:

Note that 1+x+\cdots +x^{n-1}+x^n = \sum_{j=0}^{n} x^j = \frac{1-x^{n+1}}{1-x} Hence I= \int_{0}^{1} \frac{\ln(x)}{x^n+x^{n-1}+\cdots +1} dx = \int_{0}^{1} \frac{(1-x)\ln(x)}{1-x^{n+1}} dx = \underbrace{\int_{0}^{1}\frac{\ln(x)}{1-x^{n+1}}dx}_{J} - \underbrace{\int_{0}^{1} \frac{x\ln(x)}{1-x^{n+1}}dx }_{K} Since 0 \lt x \lt 1 \begin{align*} J = \int_{0}^{1}\frac{\ln(x)}{1-x^{n+1}}dx =& \int_{0}^{1} \sum_{j=0}^{\infty} x^{(n+1)j} \ln(x) dx \\ =& \sum_{j=0}^{\infty}\int_{0}^{1} x^{(n+1)j} \left(\frac{d}{dt}\Big|_{t=0+} x^t \right) dx\\ =& \frac{d}{dt}\Big|_{t=0+} \sum_{j=0}^{\infty}\int_{0}^{1} x^{(n+1)j+t} dx\\ =& \frac{d}{dt}\Big|_{t=0+} \sum_{j=0}^{\infty}\frac{1}{(n+1)j+t+1}\\ =& \sum_{j=0}^{\infty}\left[\frac{d}{dt}\Big|_{t=0+}\frac{1}{(n+1)j+t+1}\right]\\ =& -\sum_{j=0}^{\infty}\frac{1}{\left((n+1)j+1\right)^2}\\ \end{align*} \begin{align*} K= \int_{0}^{1} \frac{x\ln(x)}{1-x^{n+1}}dx =& \int_{0}^{1} \sum_{j=0}^{\infty}x^{(n+1)j+1}\ln(x)dx\\ =& \sum_{j=0}^{\infty}\int_{0}^{1}x^{(n+1)j+1}\left(\frac{d}{dt}\Big|_{t=0+} x^t \right)dx\\ =& \frac{d}{dt}\Big|_{t=0+} \sum_{j=0}^{\infty}\int_{0}^{1} x^{(n+1)j+1+t}dx\\ =& \frac{d}{dt}\Big|_{t=0+} \sum_{j=0}^{\infty}\frac{1}{(n+1)j+2+t} \\ =& \sum_{j=0}^{\infty}\left[\frac{d}{dt}\Big|_{t=0+}\frac{1}{(n+1)j+2+t} \right]\\ =& -\sum_{j=0}^{\infty}\frac{1}{\left((n+1)j+2\right)^2} \end{align*} Hence \begin{align*} \int_{0}^{1} \frac{\ln(x)}{x^n+x^{n-1}+\cdots +1} dx =& -\sum_{j=0}^{\infty}\frac{1}{\left((n+1)j+1\right)^2} +\sum_{j=0}^{\infty}\frac{1}{\left((n+1)j+2\right)^2}\\ =& -\sum_{j=0}^{\infty}\frac{1}{(n+1)^2\left(j+\frac{1}{n+1}\right)^2} +\sum_{j=0}^{\infty}\frac{1}{(n+1)^2\left(j+\frac{2}{n+1}\right)^2} \end{align*} Recall that he polygamma function has the series representation \psi^{(m)}(z) = (-1)^{m+1}\, m! \sum_{k=0}^\infty \frac{1}{(z+k)^{m+1}} Therefore \begin{align*} \int_{0}^{1} \frac{\ln(x)}{x^n+x^{n-1}+\cdots +1} dx = & \sum_{j=0}^{\infty}\frac{1}{(n+1)^2\left(j+\frac{2}{n+1}\right)^2}-\sum_{j=0}^{\infty}\frac{1}{(n+1)^2\left(j+\frac{1}{n+1}\right)^2} \\ =& \frac{1}{(n+1)^2}\left[\psi^{(1)}\left(\frac{2}{n+1}\right)+ \psi^{(1)}\left(\frac{1}{n+1}\right)\right] \end{align*} Hence, we can conclude \boxed{\int_{0}^{1} \frac{\ln(x)}{x^n+x^{n-1}+\cdots +1} dx = \frac{1}{(n+1)^2}\left[\psi^{(1)}\left(\frac{2}{n+1}\right)+ \psi^{(1)}\left(\frac{1}{n+1}\right)\right]}

Confluent hypergeometric function

Fun series

Singular series posted by @infseriesbot


Today we evaluate this series posted by @infseriesbot \left(\sum_{n=0}^{\infty} \frac{(2n)!}{n!^3} x^n\right)^2 = e^{4x}\sum_{n=0}^{\infty} \frac{(2n)!}{n!^4} x^{2n} The proof will rely on some properties of the confluent hypergeometric function and the binomial coefficient

Proof:

We start with the left hand side. Recall that the Pocchhammer symbol or rising factorial can be expressed as quotient of two gamma functions (x)_{n} = \frac{\Gamma(n+x)}{\Gamma(x)} Hence (2n)! = \Gamma(2n+1) = (1)_{2n} Pochhammer symbols also satisfy the duplication formula: (x)_{2n} = 4^n\left(\frac{x}{2}\right)_{n}\left(\frac{1+x}{2}\right)_{n} Hence (2n)! = 4^{n}\left(\frac{1}{2}\right)_{n}(1)_{n} Note also that \displaystyle (1)_{n} = n!. Hence, \sum_{n=0}^{\infty} \frac{(2n)!}{n!^3} x^n =\sum_{n=0}^{\infty} \frac{4^{n}\left(\frac{1}{2}\right)_{n}(1)_{n}}{(1)_{n}(1)_{n}} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}}{(1)_{n}} \frac{(4x)^n}{n!} = {}_{1}F_{1}\left(\frac{1}{2};1;4x\right) The right hand side is the confluent hypergometric function {}_{1}F_{1}(a;b;x). This function is also denoted with M(a;b;x):

The confluent hypergometric function satisfies the Kummer's second theorem or second transformation: {}_1F_1(a,2a,x)= e^{x/2}\, {}_0F_1 \left(; a+\tfrac{1}{2}; \tfrac{x^2}{16} \right) Therefore \sum_{n=0}^{\infty} \frac{(2n)!}{n!^3} x^n= {}_{1}F_{1}\left(\frac{1}{2};1;4x\right) =e^{2x}\, {}_0F_1 \left(; 1; x^2 \right) From the definition of {}_{0}F_{1}: e^{2x}\, {}_0F_1 \left(; 1; x^2 \right) = e^{2x} \sum_{n=0}^{\infty} \frac{x^{2n}}{n!^2} Hence \sum_{n=0}^{\infty} \frac{(2n)!}{n!^3} x^n = e^{2x} \sum_{n=0}^{\infty} \frac{x^{2n}}{n!^2} Squaring both sides \left(\sum_{n=0}^{\infty} \frac{(2n)!}{n!^3} x^n\right)^2 = e^{4x} \left(\sum_{n=0}^{\infty} \frac{x^{2n}}{n!^2} \right)^2 \tag{1} We can evaluate the right hand side with the Cauchy product: \begin{align*}\left(\sum_{n=0}^{\infty} \frac{x^{2n}}{n!^2} \right)^2 = &\sum_{n=0}^{\infty}\sum_{j=0}^{n} \frac{1}{j!^2(n-j)!^2} x^{2n}\\ =& \sum_{n=0}^{\infty}\frac{1}{n!^2}\sum_{j=0}^{n} \frac{n!^2}{j!^2(n-j)!^2} x^{2n}\\ =& \sum_{n=0}^{\infty}\frac{x^{2n}}{n!^2}\sum_{j=0}^{n} {\binom{n}{j}}^2 \tag{2} \end{align*} From the properties of the binomial coefficient we know that: \sum_{j=0}^{J}{\binom{n}{j}}^2 = \binom{2n}{n} \quad J\geq n \tag{3} Therefore \left(\sum_{n=0}^{\infty} \frac{x^{2n}}{n!^2} \right)^2 = \sum_{n=0}^{\infty}\frac{x^{2n}}{n!^2}\sum_{j=0}^{n} {\binom{n}{j}}^2 = \sum_{n=0}^{\infty}\frac{x^{2n}}{n!^2}\binom{2n}{n} = \sum_{n=0}^{\infty}\frac{(2n)!}{n!^4}x^{2n} \tag{4} Hence from (1),(2),(3) and (4) we can conclude: \boxed{\left(\sum_{n=0}^{\infty} \frac{(2n)!}{n!^3} x^n\right)^2 = e^{4x}\sum_{n=0}^{\infty} \frac{(2n)!}{n!^4} x^{2n}}

Sunday, December 5, 2021

Integral of the day XIII

Another fun integral

Integral involving \zeta(2)


Today we show the proof of this result posted by @integralsbot \int_{0}^{\pi} \frac{\ln\left(1+\frac{\cos x}{2}\right)}{\cos x} dx = \zeta(2)

Proof:

Consider the following integral: \Phi(a) = \int_{0}^{\pi} \frac{\ln\left(1+a\frac{\cos x}{2}\right)}{\cos x} dx \quad 0\lt a\lt 2 Differentiating under the integral sing and using the fact that \displaystyle \frac{1}{2\cos x + a } is an even function : \Phi'(a) = \int_{0}^{\pi} \frac{1}{2\cos x + a } dx = \frac{1}{2}\int_{-\pi}^{\pi} \frac{1}{2\cos x + a } dx If we make the substitution: \cos x = \frac{z+z^{-1}}{2} dx = \frac{dz}{zi} we transform this integral in a contour integral round the unit complex circle \Phi'(a) = \frac{1}{2}\int_{-\pi}^{\pi} \frac{1}{2\cos x + a } dx = -i\oint_{|z|=1} \frac{dz}{az^2+4z+a} The function f(z) = \frac{1}{az^2+4z+a} has two poles at \displaystyle z = \frac{\sqrt{4-a^2}-2}{a} and \displaystyle z = \frac{-\sqrt{4-a^2}-2}{a}

The condition that a>0 assures that the only pole inside the unit complex circle is \displaystyle z = \frac{\sqrt{4-a^2}-2}{a}

By the Cauchy integral formula:

\Phi'(a) = -i\oint_{|z|=1} \frac{dz}{az^2+4z+a} = \frac{2\pi}{a\left(\frac{\sqrt{4-a^2}-2}{a} + \frac{\sqrt{4-a^2}+2}{a}\right)} = \frac{\pi}{\sqrt{4-a^2}} Integrating with respect to a: \begin{align*} \Phi(a) = \pi\int \frac{da}{\sqrt{4-a^2}} + C =& \frac{\pi}{2} \int \frac{da}{\sqrt{1-\frac{a^2}{4}}} + C\\ =& \pi \int \frac{dw}{\sqrt{1-w^2}} + C \quad \left(w^2 \mapsto \frac{a^2}{4}\right) \\ =& \pi\arcsin(w) + C\\ =& \pi\arcsin\left(\frac{a}{2}\right) + C \end{align*} Therefore \Phi(a) = \int_{0}^{\pi} \frac{\ln\left(1+a\frac{\cos x}{2}\right)}{\cos x} dx = \pi\arcsin\left(\frac{a}{2}\right) + C If we let a\to 0+ then \Phi(0)=0, \arcsin(0)=0 and C=0

If we put a=1 \Phi(1) = \int_{0}^{\pi} \frac{\ln\left(1+\frac{\cos x}{2}\right)}{\cos x} dx = \frac{\pi^2}{6} = \zeta(2) Hence, we can conclude \boxed{\int_{0}^{\pi} \frac{\ln\left(1+a\frac{\cos x}{2}\right)}{\cos x} dx = \pi\arcsin\left(\frac{a}{2}\right) \quad 0\lt a \lt 2} \boxed{\int_{0}^{\pi} \frac{\ln\left(1+\frac{\cos x}{2}\right)}{\cos x} dx = \zeta(2)}

Friday, December 3, 2021

Integral of the day XII

Fun integral

Fun integral posted by @integralsbot


Today we evaluate this fun integral posted by @integralsbot \int_{0}^{\pi} \frac{\ln (1-2a\cos x + a^2)}{1-2a\cos x +a^2} dx = \frac{2\pi \ln(1-a^2)}{1-a^2} \quad |a|<1 To proof this result we will use Fourier series and contour integration.

Proof

Firt, we need the following Fourier series: \sum_{k=1}^{\infty} \frac{a^k\cos(kx)}{k} = -\frac{1}{2} \ln (1-2a\cos x + a^2) \quad x\in(0,2\pi), \quad a^2\leq 1 \tag{1} The proof is almost straight: take principal branch of the \ln(z) function, then: \begin{align*} \sum_{k=1}^{\infty} \frac{a^k\cos(kx)}{k} =& \frac{1}{2}\sum_{k=1}^{\infty} \frac{a^k}{k}(e^{ikx} + e^{-ikx})\\ =& \frac{1}{2}\sum_{k=1}^{\infty}\frac{(ae^{ix})^k}{k} + \frac{1}{2}\sum_{k=1}^{\infty}\frac{(ae^{-ix})^k}{k} \\ =& -\frac{1}{2}\ln\left(1-ae^{ix}\right) -\frac{1}{2}\ln\left(1-ae^{-ix}\right)\\ =& -\frac{1}{2}\ln\left((1-ae^{ix})(1-ae^{-ix})\right)\\ =& -\frac{1}{2}\ln\left(1-a(e^{-ix}+e^{ix})+a^2\right)\\ =& -\frac{1}{2}\ln(1-2a\cos(x) +a^2) \end{align*} Back to the integral: \begin{align*} \int_{0}^{\pi} \frac{\ln (1-2a\cos x + a^2)}{1-2a\cos x +a^2} dx = -2\int_{0}^{\pi} \sum_{k=1}^{\infty}\frac{a^k\cos(kx)}{k(1-2a\cos x +a^2)} dx\\ = -2 \sum_{k=1}^{\infty}\frac{a^k}{k}\int_{0}^{\pi} \frac{\cos(kx)}{1-2a\cos x +a^2}dx \tag{2} \end{align*} Now note that f(x) = \frac{\cos(kx)}{1-2a\cos x +a^2} is an even function.

Hence \int_{0}^{\pi} \frac{\cos(kx)}{1-2a\cos x +a^2}dx = \frac{1}{2}\int_{-\pi}^{\pi} \frac{\cos(kx)}{1-2a\cos x +a^2}dx = \frac{1}{2}\Re{\left(\int_{-\pi}^{\pi} \frac{e^{ixk}}{1-2a\cos x +a^2}dx\right)} \tag{3} If we make the substitution \cos x = \frac{z+z^{-1}}{2} e^{ix} = z dx = \frac{dz}{zi} Our integral is transformed in a contour integral round the unit complex circle: \int_{-\pi}^{\pi} \frac{e^{ixk}}{1-2a\cos x +a^2}dx = i\oint_{|z|=1} \frac{z^{k}}{(z-a)(az-1)}dz \tag{4}

The function \displaystyle f(z) = \frac{z^{k}}{(z-a)(az-1)} has two poles at z=a and \displaystyle z=\frac{1}{a}.

The conditions in (1) assure that z=a with |a|<1 is the only pole inside the unit circle.

Then, by the Cauhcy integral formula i\oint_{|z|=1} \frac{z^{k}}{(z-a)(az-1)}dz = 2\pi \frac{ a^k}{1-a^2} \tag{5} Therefore \begin{align*} \int_{0}^{\pi} \frac{\ln (1-2a\cos x + a^2)}{1-2a\cos x +a^2} dx =& -2\sum_{k=1}^{\infty}\frac{a^k}{k}\int_{0}^{\pi} \frac{\cos(kx)}{1-2a\cos x +a^2}dx \quad \textrm{from (2) }\\ =& -\sum_{k=1}^{\infty}\frac{a^k}{k}\int_{-\pi}^{\pi} \frac{\cos(kx)}{1-2a\cos x +a^2}dx \\ =& -\sum_{k=1}^{\infty}\frac{a^k}{k}\Re{\left(\int_{-\pi}^{\pi} \frac{e^{ixk}}{1-2a\cos x +a^2}dx\right)} \quad \textrm{from (3) }\\ =& -\sum_{k=1}^{\infty}\frac{a^k}{k}\Re{\left(i\oint_{|z|=1} \frac{z^{k}}{(z-a)(az-1)}dz\right)} \quad \textrm{from (4)}\\ =& -\sum_{k=1}^{\infty}\frac{a^k}{k}\Re{\left(2\pi \frac{ a^k}{1-a^2}\right)} \quad \textrm{from (5)}\\ =& \frac{2\pi}{1-a^2}\left(-\sum_{k=1}^{\infty}\frac{a^{2k}}{k}\right)\\ =& \frac{2\pi \ln(1-a^2)}{1-a^2} \end{align*} Hence, we can conclude \boxed{ \int_{0}^{\pi} \frac{\ln (1-2a\cos x + a^2)}{1-2a\cos x +a^2} dx = \frac{2\pi \ln(1-a^2)}{1-a^2} \quad |a|<1 }

Thursday, December 2, 2021

Integral of the day XI

Integral from Twitter

Integral involving the trigamma constant \psi^{(1)}\left(\frac{1}{3}\right)


Today we show the proof of the following result proposed by @Ali3934213 \int_{0}^{\infty} \frac{\ln(x+1)}{x^3+1} dx = \frac{1}{9} \left[-\pi^2+\pi\sqrt{3}\ln(3) +\psi^{(1)}\left(\frac{1}{3}\right) \right] The proof relies on some properties of the polylogarithm and the trigamma function.

Proof

I = \int_{0}^{\infty} \frac{\ln(x+1)}{x^3+1} dx = \int_{0}^{1} \frac{\ln(x+1)}{x^3+1} dx+ \underbrace{\int_{1}^{\infty} \frac{\ln(x+1)}{x^3+1} dx}_{J} J = \int_{1}^{\infty} \frac{\ln(x+1)}{x^3+1} dx \stackrel{w \mapsto \frac{1}{x}}{=} \int_{0}^{1} \frac{\ln\left(\frac{w+1}{w}\right)w}{w^3+1} dw= \int_{0}^{1} \frac{\ln\left(w+1\right)w}{w^3+1} dw - \int_{0}^{1} \frac{\ln\left(w\right)w}{w^3+1} dw Hence \begin{align*} I =& \int_{0}^{1} \frac{\ln(x+1)}{x^3+1} dx + \int_{0}^{1} \frac{\ln\left(w+1\right)w}{w^3+1} dw - \int_{0}^{1} \frac{\ln\left(w\right)w}{w^3+1} dw\\ =& \int_{0}^{1} \frac{\ln(w+1)(w+1)}{1+w^3}dw - \int_{0}^{1} \frac{\ln\left(w\right)w}{w^3+1} dw \\ =& \underbrace{\int_{0}^{1} \frac{\ln(w+1)}{w^2-w+1}dw}_{K} - \underbrace{\int_{0}^{1} \frac{\ln\left(w\right)w}{w^3+1} dw}_{L}\\ \end{align*} Note that \Im\left(\frac{2}{\sqrt{3}}\frac{1}{w-\frac{1}{2}-i\frac{\sqrt{3}}{2}}\right) = \frac{1}{w^2-w+1} Hence \begin{align*} K = \int_{0}^{1} \frac{\ln(w+1)}{w^2-w+1}dw =& \Im \left( \frac{2}{\sqrt{3}}\int_{0}^{1} \frac{\ln(w+1)}{w-\frac{1}{2}-i\frac{\sqrt{3}}{2}} dw \right)\\ =&\Im \left( \frac{2}{\sqrt{3}}\int_{-\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)}^{\frac{1}{2}-i\frac{\sqrt{3}}{2}} \frac{\ln\left(t+\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)}{t} dt \right)\\ =& \Im \left( \frac{2}{\sqrt{3}}\int_{-\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)}^{\frac{1}{2}-i\frac{\sqrt{3}}{2}} \frac{\ln\left(\left(\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)\left(\frac{t}{\frac{3}{2}+i\frac{\sqrt{3}}{2}}+1\right)\right)}{t} dt \right)\\ =& \Im \left( \frac{2\ln\left(\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}\int_{-\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)}^{\frac{1}{2}-i\frac{\sqrt{3}}{2}} \frac{1}{t} dt + \frac{2}{\sqrt{3}}\int_{-\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)}^{\frac{1}{2}-i\frac{\sqrt{3}}{2}} \frac{\ln\left(\frac{t}{\frac{3}{2}+i\frac{\sqrt{3}}{2}}+1\right)}{t} dt\right)\\ =& \Im \left( \frac{2\ln\left(\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}\left(\ln\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)\right)-\ln\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)\right) + \Im\left(\frac{2}{\sqrt{3}}\int_{-\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)}^{\frac{1}{2}-i\frac{\sqrt{3}}{2}} \frac{\ln\left(\frac{t}{\frac{3}{2}+i\frac{\sqrt{3}}{2}}+1\right)}{t} dt\right) \\ =& \frac{\pi\ln(3)}{3\sqrt{3}}+ \Im \left( \frac{2}{\sqrt{3}}\int_{\frac{1}{2}+\frac{i}{2\sqrt{3}}}^{\frac{i}{\sqrt{3}}} \frac{\ln\left(1-s\right)}{s} ds\right) \quad \left( s \mapsto -\frac{t}{\frac{3}{2}+i\frac{\sqrt{3}}{2}}\right)\\ =& \frac{\pi\ln(3)}{3\sqrt{3}} - \frac{2}{\sqrt{3}}\Im\left(\operatorname{Li}_{2}\left(\frac{i}{\sqrt{3}}\right)-\operatorname{Li}_{2}\left(\frac{1}{2}+\frac{i}{2\sqrt{3}}\right)\right) \end{align*} The polylogarithm function satisfies: \Im\left(\operatorname{Li}_{2}\left(\frac{i}{\sqrt{3}}\right)-\operatorname{Li}_{2}\left(\frac{1}{2}+\frac{i}{2\sqrt{3}}\right)\right) = -\frac{\pi^2}{18\sqrt{3}} + \frac{1}{12\sqrt{3}}\psi^{(1)}\left(\frac{1}{3}\right) Hence K = \frac{\pi\ln(3)}{3\sqrt{3}}+\frac{\pi^2}{27} -\frac{1}{18}\psi^{(1)}\left(\frac{1}{3}\right) Now, for L; \begin{align*} L= \int_{0}^{1} \frac{\ln(w)w}{1+w^3}dw = \int_{0}^{1} \frac{\left(\frac{d}{dt}\Big|_{t=0+} w^t \right)w}{1+w^3}dw = &\frac{d}{dt}\Big|_{t=0+} \int_{0}^{1} \frac{w^{t+1}}{1+w^3} dw \\ =& \frac{d}{dt}\Big|_{t=0+} \int_{0}^{1} \sum_{n=0}^{\infty} (-1)^nw^{3n}w^{t+1} dw \\ =& \frac{d}{dt}\Big|_{t=0+} \sum_{n=0}^{\infty} (-1)^n\int_{0}^{1} w^{t+1+3n} dw \\ =& \frac{d}{dt}\Big|_{t=0+} \sum_{n=0}^{\infty} (-1)^n\frac{1}{(3n+2+t)} \\ =& \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(3n+2)^2} \\ =& \sum_{n=0}^{\infty} \frac{1}{(6n+5)^2} - \sum_{n=0}^{\infty} \frac{1}{(6n+2)^2}\\ =& \frac{1}{36}\sum_{n=0}^{\infty} \frac{1}{\left(n+\frac{5}{6}\right)^2} - \frac{1}{36} \sum_{n=0}^{\infty} \frac{1}{\left(n+\frac{1}{3}\right)^2}\\ \end{align*} Recall the series representation of the polygamma function: \psi^{(m)}(z) = (-1)^{m+1} m! \sum_{k=0}^{\infty} \frac{1}{(z+k)^{m+1}} Hence L = \frac{1}{36} \left[ \psi^{(1)}\left(\frac{5}{6}\right) -\psi^{(1)}\left(\frac{1}{3}\right)\right] Therefore I = K-L = \frac{\pi\ln(3)}{3\sqrt{3}}+\frac{\pi^2}{27} -\frac{1}{36}\psi^{(1)}\left(\frac{1}{3}\right) -\frac{1}{36}\psi^{(1)}\left(\frac{5}{6}\right) Now using the identity \psi^{(1)}\left(\frac{1}{3}\right) + \psi^{(1)}\left(\frac{5}{6}\right) = 4\psi^{(1)}\left(\frac{2}{3}\right) and the reflection formula \psi^{(1)}(1-z) + \psi^{(1)}(z) = \frac{\pi^2}{\sin^2(\pi z)} with \displaystyle z = \frac{2}{3} we have \psi^{(1)}\left(\frac{1}{3}\right) + \psi^{(1)}\left(\frac{2}{3}\right) = \frac{4}{3}\pi^2 Therefore \boxed{\int_{0}^{\infty} \frac{\ln(x+1)}{x^3+1} dx = \frac{1}{9} \left[-\pi^2+\pi\sqrt{3}\ln(3) +\psi^{(1)}\left(\frac{1}{3}\right) \right]}

Series of the day

Series involving the digamma and the zeta functions The sum \displaystyle \sum\frac{1}{(n+1)^pn^q} ...