Weird integrals of infseriesbot
Monstrous integrals posted by @infseriesbot
Today we show the proof of this triplet of very weird integrals posted by @infseriesbot
here,
here and
here:
Let
|z|\lt1 , then
\int_{0}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx = \pi
\int_{0}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx = \pi
\int_{0}^{\frac{\pi}{2}} \cos\left(bx-a\arctan\left(\frac{z\sin 2x}{1+z\cos 2x}\right)\right)(1+2z\cos2x +z^2)^{-\frac{a}{2}}\cos^{c-1}x dx = \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{1-b+c}{2}\right)\Gamma\left(\tfrac{1+b+c}{2}\right)}{{}_{2}F_{1}}\left[{a,\tfrac{1+b-c}{2}\atop \tfrac{1+b+c}{2}};z\right]
These results are consequence of the residue theorem and some properties of the hypergeometric functions. We previously solved similar integrals
here and
here using similar techniques.
Proof:
1. First integral
Let
I = \int_{0}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx
First, note that the function
f(x) = \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}
is an even function. Then,
I = \frac{1}{2}\int_{-\pi}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx
Using the fact that
\Re (e^{i\varphi}) = \cos(\varphi):
I = \Re\left( \frac{1}{2}\int_{-\pi}^{\pi} e^{\left(ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)}(1+2z\cos x+z^2)^{-\frac{a}{2}} dx\right)
Making the following substitution:
e^{ix} = w
\cos(x) = \frac{w+w^{-1}}{2}
\sin(x) = \frac{w-w^{-1}}{2i}
dx = \frac{dw}{wi}
Using the logarithmic definition of
\arctan and after a lengthy but easy calculation we can obtain:
\begin{align*}\arctan\left(\frac{z\sin x}{1+z\cos x}\right) =& \arctan\left(\frac{i(z-w^2z)}{w^2z+2w+z}\right)\\
=& -\frac{i}{2}\ln\left(\frac{w^2z+w}{w+z}\right) \tag{1}
\end{align*}
e^{\left(ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)} = e^{\frac{a}{2}\ln\left(\frac{w^2z+w}{w+z}\right)} = \left(\frac{w^2z+w}{w+z}\right)^{\frac{a}{2}}
Also note that
(1+2z\cos x + z^2) = \frac{(w+z)(wz+1)}{w} \tag{2}
Then, our integral became a contour integral round the unit complex circle:
I = \Re \left(\frac{1}{2}\oint_{|w|=1} \left(\frac{w^2z+w}{w+z}\right)^{\frac{a}{2}}\frac{w^{\frac{a}{2}}}{{(w+z)^{\frac{a}{2}}}(wz+1)^{\frac{a}{2}}wi} dw\right) = \Re \left(\frac{1}{2i}\oint_{|w|=1} \frac{w^{a-1}}{(w+z)^a} dw\right)
If
|w|=1>|z|, we can expand the denominator with the binomial theorem:
\Re \left(\frac{1}{2i}\oint_{|w|=1} \frac{w^{a-1}}{(w+z)^a} dw \right)= \Re\left( \frac{1}{2i}\oint_{|w|=1} \sum_{j=0}^{\infty} \binom{-a}{j} w^{-j-1}z^{j} \right) dw
The function:
g(w) = \sum_{j=0}^{\infty}\binom{-a}{j} w^{-j-1}z^{j}
Has a pole at
w=0, then the residue is the coefficient of
w^{-1}:
-j-1 = -1 \Longrightarrow j=0
\operatorname{Res}\left(g(w),0\right) = 1
By the residue theorem:
\Re\left( \frac{1}{2i}\oint_{|w|=1} \sum_{j=0}^{\infty} w^{-j-1}z^{j} dw\right) = \Re \left(\pi \operatorname{Res}\left(g(w),0\right)\right) = \Re (\pi) = \pi
Therefore
\boxed{ \int_{0}^{\pi} \cos\left(a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}} dx = \pi}
2. Second integral:
J = \int_{0}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx
The integrand is also even, then
J = \frac{1}{2}\int_{-\pi}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx
and using the fact that
\Re (e^{i\varphi}) = \cos(\varphi)
J = \Re\left(\frac{1}{2}\int_{-\pi}^{\pi} e^{\left(ibx -ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)}(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx\right)
We can expand
\displaystyle \left(2\cos \frac{x}{2}\right)^{2b} with the binomial theorem
\left(2\cos \frac{x}{2}\right)^{2b} = (e^{\frac{ix}{2}}+ e^{\frac{-ix}{2}})^{2b} = \sum_{j=0}^{\infty} \binom{2b}{j} e^{ix(b-j)}
Hence
J = \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2}\int_{-\pi}^{\pi} e^{\left(-ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)}(1+2z\cos x+z^2)^{-\frac{a}{2}}e^{ix(2b-j)}dx\right)
If we make the substitution:
e^{ix} = w
dx = \frac{dw}{wi}
and using (1) and (2). We have:
e^{\left(-ia\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)} = \left(\frac{w+z}{w^2z+w}\right)^{\frac{a}{2}}
and
(1+2z\cos x + z^2) = \frac{(w+z)(wz+1)}{w}
Hence,
\begin{align*} J =& \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2i}\oint_{|w|=1} \left(\frac{w+z}{w^2z+w}\right)^{\frac{a}{2}}\frac{w^{\frac{a}{2}}}{(w+z)^{\frac{a}{2}}(wz+1)^{\frac{a}{2}}w} w^{(2b-j)}dw\right)\\
=& \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2i}\oint_{|w|=1} \frac{w^{2b-j-1}}{(wz+1)^a}dw\right)\\
\end{align*}
If
|z|\lt1
\frac{1}{(wz+1)^a} = \sum_{k=0}^{\infty} \binom{-a}{k}w^kz^k
Hence,
\begin{align*}J=& \Re\left(\sum_{j=0}^{\infty} \binom{2b}{j} \frac{1}{2i}\oint_{|w|=1} \sum_{k=0}^{\infty} \binom{-a}{k}w^{2b-j+k-1}z^k dw\right)\\
=& \Re\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \binom{2b}{j} \binom{-a}{k}\frac{z^k }{2i}\oint_{|w|=1} w^{2b-j+k-1}dw\right)
\end{align*}
By the residue theorem
\begin{align*} J =& \Re\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \binom{2b}{j} \binom{-a}{k}\frac{z^k }{2i}\oint_{|w|=1} w^{2b-j+k-1}dw\right) \\
=&\Re\left(\pi \sum_{k=0}^{\infty} \binom{2b}{2b+k} \binom{-a}{k}z^k\right)
\end{align*}
Note that
\binom{2b}{2b+k} = 0 \Longleftrightarrow k>0 \wedge b>0
Therefore
J = \Re\left(\pi \sum_{k=0}^{\infty} \binom{2b}{2b+k} \binom{-a}{k}z^k\right) = \pi \binom{-a}{0}\binom{2b}{2b} = \pi
Hence, we can conclude
\boxed{\int_{0}^{\pi} \cos\left(bx -a\arctan\left(\frac{z\sin x}{1+z\cos x}\right)\right)(1+2z\cos x+z^2)^{-\frac{a}{2}}\left(2\cos \frac{x}{2}\right)^{2b} dx = \pi }
3. Third integral
Finally, we evaluate the last monstrous integral of this triplet using the results obtained in the previous integrals. Additionally, we need to make the assumption that
\displaystyle \tfrac{c-1+b}{2} \in \mathbb{N}
K = \int_{0}^{\frac{\pi}{2}} \cos\left(bx-a\arctan\left(\frac{z\sin 2x}{1+z\cos 2x}\right)\right)(1+2z\cos2x +z^2)^{-\frac{a}{2}}\cos^{c-1}x dx
Do the substitution
\displaystyle t = 2x.
K = \frac{1}{2} \int_{0}^{\pi} \cos\left(\frac{bt}{2}-a\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)(1+2z\cos t +z^2)^{-\frac{a}{2}}\cos^{c-1}\left(\frac{t}{2}\right) dt
Again, the integrand is an even function of
t:
K = \frac{1}{4} \int_{-\pi}^{\pi} \cos\left(\frac{bt}{2}-a\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)(1+2z\cos t +z^2)^{-\frac{a}{2}}\cos^{c-1}\left(\frac{t}{2}\right) dt
Using the fact that
\displaystyle \Re(e^{i\varphi}) = \cos(\varphi)
K = \Re \left(\frac{1}{4} \int_{-\pi}^{\pi} e^{\left(i\frac{bt}{2}-ia\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)}(1+2z\cos t +z^2)^{-\frac{a}{2}}\cos^{c-1}\left(\frac{t}{2}\right) dt\right)
Expanding
\displaystyle \cos^{c-1}\left(\frac{t}{2}\right) with the binomial theorem:
K = \Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}} \int_{-\pi}^{\pi} e^{\left(-ia\arctan\left(\frac{z\sin t}{1+z\cos t}\right)\right)}(1+2z\cos t +z^2)^{-\frac{a}{2}}e^{it\left(\frac{b+c-1}{2}-j\right)} dt\right)
Again, making the substitution
e^{it} = w
dt = \frac{dw}{wi}
and using (1) and (2) we have
\begin{align*} K = &\Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}i} \oint_{|w|=1}\left(\frac{w+z}{w^2z+w}\right)^{\frac{a}{2}}\frac{w^{-\frac{a}{2}}}{(w+z)^{\frac{a}{2}}(wz+1)^{\frac{a}{2}}w}w^{\left(\frac{b+c-1}{2}-j\right)} dt\right)\\
=& \Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}i} \oint_{|w|=1} \frac{w^{\left(\frac{b+c-1}{2}-j-1\right)}}{(wz+1)^a} dw\right)
\end{align*}
Assuming that
|z|\lt1 and expanding
\displaystyle \frac{1}{(wz+1)^a} with the binomial theorem:
\begin{align*} K=& \Re \left(\sum_{j=0}^{\infty} \binom{c-1}{j} \frac{1}{2^{c+1}i} \oint_{|w|=1} \sum_{k=0}^{\infty} \binom{-a}{k} w^{\left(\frac{b+c-1}{2}-j+k-1\right)}z^k dw\right)\\
=&\Re \left(\sum_{j=0}^{\infty}\sum_{k=0}^{\infty} \binom{c-1}{j} \binom{-a}{k} \frac{z^k}{2^{c+1}i} \oint_{|w|=1} w^{\left(\frac{b+c-1}{2}-j+k-1\right)} dw\right)
\end{align*}
Applying the residue theorem:
K = \Re \left(\sum_{j=0}^{\infty}\sum_{k=0}^{\infty} \binom{c-1}{j} \binom{-a}{k} \frac{z^k}{2^{c}}\pi \operatorname{Res}\left(w^{\left(\frac{b+c-1}{2}-j+k-1\right)},0\right)\right)
The residue is the coefficient of
w^{-1}
Then
w^{-1} = w^{\left(\frac{b+c-1}{2}-j+k-1\right)} \Longrightarrow j = k+\frac{b+c-1}{2}
Since all the parameters are real or natural numbers we can dropout the
\Re. Therefore,
K = \frac{\pi}{2^c}\sum_{j=0}^{\infty} \binom{c-1}{ k+\frac{b+c-1}{2}} \binom{-a}{k} z^{k}
Who is this mysterious function? Let's see
Recall the formula that relate the binomial coefficient to the Pochhammer polynomial or rising factorial:
\binom{v}{m} = \frac{(v-m+1)_{m}}{m!}
Hence
\begin{align*}
K =& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \binom{c-1}{ k+\frac{b+c-1}{2}} \binom{-a}{k} z^{k} \\
&= \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{c-1-b}{2}-k+1\right)_{k+\tfrac{b+c-1}{2}}(-a-k+1)_{k}}{\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k}
\end{align*}
Now, using the rule for rising factorial
(x)_{n+m} = (x)_{n}(x+n)_{m}
we have
\left(\tfrac{c-1-b}{2}-k+1\right)_{k+\tfrac{b+c-1}{2}} = \left(\tfrac{c-1-b}{2}-k+1\right)_{k}\left(\tfrac{c-1-b}{2}+1\right)_{\tfrac{b+c+1}{2}} \tag{3}
Now, using the reflection formula
(-x)_{n} = (-1)^n(x-n+1)_{n} \tag{4}
and the fact that the rising factorial can be expressed as the quotient of two gamma functions:
(x)_{n} = \frac{\Gamma(n+x)}{\Gamma(x)} \tag{5}
we have
\begin{align*}
K= &\frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{c-1-b}{2}-k+1\right)_{k+\tfrac{b+c-1}{2}}(-a-k+1)_{k}}{\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k}\\
=& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{ \left(\tfrac{c-1-b}{2}-k+1\right)_{k}\left(\tfrac{c-1-b}{2}+1\right)_{\tfrac{b+c+1}{2}}(-a-k+1)_{k}}{\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k} \quad \textrm{ from } (3)\\
=& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{(-1)^k\left(\tfrac{b+1-c}{2}\right)_{k}\Gamma(c)(-a-k+1)_{k}}{\Gamma\left(\tfrac{c+1-b}{2}\right)\left(k+\tfrac{b+c-1}{2}\right)!k!} z^{k} \quad \textrm{ from } (4),(5)\\
=& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{b+1-c}{2}\right)_{k}\Gamma(c)(a)_{k}}{\Gamma\left(\tfrac{c+1-b}{2}\right)\Gamma\left(k+\tfrac{b+c+1}{2}\right)k!} z^{k}\\
=& \frac{\pi}{2^c}\sum_{j=0}^{\infty} \frac{\left(\tfrac{b+1-c}{2}\right)_{k}\Gamma(c)(a)_{k}}{\Gamma\left(\tfrac{c+1-b}{2}\right)\Gamma\left(\tfrac{b+c+1}{2}\right)\left(\tfrac{b+c+1}{2}\right)_{k}k!} z^{k}\\
=& \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{c+1-b}{2}\right)\Gamma\left(\tfrac{b+c+1}{2}\right)}\sum_{j=0}^{\infty} \frac{\left(\tfrac{b+1-c}{2}\right)_{k}(a)_{k}}{\left(\tfrac{b+c+1}{2}\right)_{k}} \frac{z^{k}}{k!}\\
=& \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{1-b+c}{2}\right)\Gamma\left(\tfrac{1+b+c}{2}\right)}{{}_{2}F_{1}}\left[{a,\tfrac{1+b-c}{2}\atop \tfrac{1+b+c}{2}};z\right]\\
\end{align*}
Therefore
\boxed{\int_{0}^{\frac{\pi}{2}} \cos\left(bx-a\arctan\left(\frac{z\sin 2x}{1+z\cos 2x}\right)\right)(1+2z\cos2x +z^2)^{-\frac{a}{2}}\cos^{c-1}x dx = \frac{\pi}{2^c}\frac{\Gamma(c)}{\Gamma\left(\tfrac{1-b+c}{2}\right)\Gamma\left(\tfrac{1+b+c}{2}\right)}{{}_{2}F_{1}}\left[{a,\tfrac{1+b-c}{2}\atop \tfrac{1+b+c}{2}};z\right]}